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ABSTRACT 

Voting results in marginal constituencies often determine wider political outcomes. 
Always a focus for campaigners, it is now apparent that voters in these areas have 
been individually and geo-behaviourally targeted by elaborate ‘psychological 
warfare’ operations designed to manipulate viewpoints and electoral results 
through advertising, (mis)information and/or ‘fake news’ disseminated online via 
popular social network sites. During the 2016 US Presidential Election, Russian 
operatives placed highly-politicised content supporting Donald Trump’s candidacy 
on Facebook and Twitter, segmenting audiences on these platforms by age, 
interests and location. In 2018, political marketing consultancy Cambridge Analytica 
was revealed to have earlier ‘hijacked’ data from Facebook, fusing it with other Big 
Data sources to promote Trump, in the US, and Vote Leave, in the 2016 UK 
European Union (‘Brexit’) Membership Referendum. Attempts to track the 
geographical diffusion of online politicking are hindered by incomplete geospatial 
referencing in available social media (meta)data; just ~1-2% of publicly-posted 
Twitter tweets, and even fewer Facebook posts, are typically ‘geotagged’ with 
Latitude and Longitude coordinates. Used successfully to monitor disaster 
situations or human mobility patterns this research examines ~8m interactions, 
created by ~2.4m users during the 2012 US Presidential Election and the 2014 
Scottish Independence Referendum, to assess the role of space and place in 
politicised social media communications. Results of text, data-mining and statistical 
analyses demonstrate that coordinate-geotagging users of Twitter and Facebook, a) 
make fewer references to place in their message text, b) link to articles making 
fewer mentions of place in their content and; c) make far fewer links to external 
content than their non-coordinate-geotagging peers. Despite offering some 
valuable geospatial information, coordinate-geotagged interactions form only an 
inadequate and unrepresentative proxy for tracking the spread of all places, news, 
views, opinion, linked content or (mis)information shared online. Tackling the 
‘crisis’ in deliberative democracy highlighted by recent data misuse and targeting 
scandals will, therefore, most likely require new political, regulatory and technical 
responses. One approach, suggested here, would store lower-resolution spatial 
information, e.g., identifiers uniquely referencing 1x1km grid squares or degraded 
Latitude and Longitude coordinates, alongside all social media interactions; 
enabling electoral officials, platform operators and others to more easily identify 
potentially nefarious content targeting specific areas as well as specific individuals. 
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1 INTRODUCTION 

1.1 Background 

Online social networks, politics and Big Data, are in the news. Explosive revelations 

surrounding Cambridge Analytica’s long-standing misuse of Facebook data for 

political marketing purposes have prompted a US Congressional Committee inquiry 

to investigate data usage, sharing and privacy policies at Facebook (McKinnon & 

Seetharaman, 2018; U.S. House of Representatives, 2018b) ‘leaving the internet 

giant scrambling to contain a growing scandal over how it treats its users’ (Dinan, 

2018). Political campaigning using advanced behavioural and psychographic 

targeting, alongside geographical micro-marketing (Albright, 2017) designed to 

bring out or win over key voters, may even have affected the outcome of the 2016 

US Presidential Election, a contest which Cambridge Analytica claimed to have 

‘won’ for Donald Trump (P. Lewis & Hilder, 2018). The misuse of large amounts of 

personal data, together with Russian state-sponsored interference in electoral 

processes through the promotion of frequently inflammatory material on popular 

social networks, including Facebook and Twitter (BBC News, 2018c), has been 

widely reported in the mainstream media (Cadwalladr & Graham-Harrison, 2018; 

New York Times, 2018). 

In the UK, connections between political strategists from Cambridge Analytica 

(2018) and pro-Brexit Vote Leave campaigners contesting the 2016 UK European 

Union Membership Referendum have led to claims that ‘data-analytics’ provided by 

CA political (Figure 1-5, p31) and AggregateIQ (Ram, 2018) have effectively 

‘hijacked our democracy’ (Cadwalladr, 2017). These assertions will soon be tested 

by a group of British expatriates (Bowcott, 2018) taking a case to the High Court 

challenging the legality of the ‘Brexit’ result (S. Wilson, 2018) following Vote Leave’s 

£449,079 over-spend during the campaign; recently detected, and penalised with 

several fines, by The Electoral Commission (2018b). Campaign spending on ‘digital’ 
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has risen steadily in the UK (Sabbagh, 2018) as ‘trends captured by the terms 

professionalization, marketization and mediatization explain dramatic shifts in the 

way parties execute their election campaigns’ (Lilleker, Tenscher, & Štětka, 2014, 

p747). These developments, and the related issues surrounding the promulgation 

of ‘fake news’, which researchers have found travels particularly rapidly across 

online social networks (Vosoughi, Roy, & Aral, 2018), have prompted a House of 

Commons Select Committee Inquiry (Digital Culture Media and Sport Committee, 

2018) to call on noted academic experts in media and communications studies for 

evidence (Fuchs, 2017c). Amongst Ministers and Members of Parliament there is 

widespread concern that targeted digital communications and/or fake news, 

disseminated over the Internet or on social media networks, may be ‘crowding out’ 

real news, creating a ‘crisis’ for British democracy (BBC News, 2018h).  

In the US, the newly-elected 45th President of the United States, Donald Trump, 

faces a smouldering investigation by Special Counsel Robert Mueller into his links, 

and his campaign team’s links, with Russian operatives seeking to influence the 

outcome of the 2016 election which brought him to power. Since his appointment 

as head of the ‘independent federal investigative and prosecutorial agency’ (U.S. 

Office of Special Counsel, 2018) on 17 May 2017, Mueller has ‘indicted 22 criminal 

defendants and garnered five guilty pleas, including from Michael Flynn, the former 

national security adviser; Richard Gates III, a former deputy to campaign chairman 

Paul Manafort; and George Papadopoulos, a former Trump foreign policy aide’ 

(McCarthy, 2018). Trump’s campaign ally, Roger Stone, may be next in Mueller’s 

firing-line (Swaine, 2018) as ‘special sections’ in many newspapers (e.g., The New 

York Times, 2018) suggest that coverage of the Special Counsel’s investigations into 

Trump’s electoral campaign will continue to run and run. 

In academia, scholarly articles now ask ‘Can Democracy survive the Internet?’ 

(Persily, 2017) where once there had been ‘a relatively brief period of euphoria 

about the possibility that social media might usher in a golden age of global 
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democratization’ (Tucker et al., 2018, p3). Social networks, the data they hold and 

the extensive and targetable reach they enable have become newsworthy – and an 

increasingly important subject area for academic research – as the widespread 

realisation has dawned that several of the phenomenally successful Internet 

businesses established in the last decade or so (Facebook, Google, Twitter et al.) 

have grown rich and perhaps, at times, been somewhat careless in navigating the 

Faustian bargain made by so many people in exchanging ever more personal 

information for free, expertly-developed, and frequently pervasive software 

applications designed to touch so many aspects of our ‘connected’ lives (Andersson, 

2018). 

Several other revelations regarding the (mis)use of social media platforms and Big 

Data repositories have also emerged. For example, the development of a quiz ‘app’, 

or application, created by a University of Cambridge academic (Etter & Frier, 2018) 

and installed by just 305,000 people led directly to the ‘harvesting’ of ~87 million 

Facebook user profiles in 2015 including, ironically, details from Facebook-founder 

Mark Zuckerberg’s own personal account (The Independent, 2018). Data collected 

by the ‘ThisIsYourDigitalLife’ app, and shared with Cambridge Analytica, exploited 

the ‘social graph’, or set of inter-linkages between Facebook users, and the 

platform’s API, or Application Programming Interface (BBC News, 2018e). These 

data were later used to ‘build psychological profiles of voters in the United States’ 

and elsewhere (Frenkel, Rosenberg, & Confessore, 2018). 

Governments, regulatory agencies and lawyers in the US, UK, EU and elsewhere are 

currently examining the multiple breaches of online trust engendered by these 

developments, while the social science and scientific community to some extent 

play ‘catch-up’; even though issues surrounding ‘homophily’ (Abbasi, Zafarani, 

Tang, & Liu, 2014), ‘echo chambers’ (Gilbert, Bergstrom, & Karahalios, 2009), 

‘polarization’ (De Nooy & Kleinnijenhuis, 2013), ‘participation’ (de Zúñiga, Veenstra, 

Vraga, & Shah, 2010) and ‘misinformation’ (Budak, Agrawal, & El Abbadi, 2011) in 
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politicised online social media discourse have been researched for quite some time 

(Chapter 2, p51). 

The present study, drawing on a part-time research programme commenced in 

2011, is situated within both of these evolving and contemporary contexts. The 

research examines how ‘place’ and ‘space’ are differentially used, referenced 

and/or shared in politically discursive messages by individuals interacting on two 

popular Online Social Network (OSN) platforms; Facebook and Twitter. Two 

relatively recent political events provide the backdrop to the collection of case 

study material examined in this work; the 2012 United States Presidential Election 

(US2012) and the 2014 Scottish Independence Referendum (SCOT2014). These 

case studies have been selected as elections offer a data-rich environment with 

contemporaneous opinion polling, known post-electoral outcomes (Bond & State, 

2015) and clearly-defined, and geographically ‘bound’, voting districts or 

constituencies (Cox, 1969; Elden, 2005; Giddens, 1985). 

Electorates in these areas are now increasingly targetable, and are being actively 

targeted online, by political parties and marketing professionals seeking to 

influence turnout or voting behaviour in the small number of marginal ‘swing’ 

states or constituencies that often determine wider political outcomes in 

established Western democracies (Lilleker et al., 2015; Moore, 2016; The Electoral 

Commission, 2018a). Bespoke geographical targeting campaigns, as developed by 

Cambridge Analytica, may exploit (Section 6.2, p229) toponymic references found 

in users’ self-reported ‘Location’ fields (Hecht, Hong, Suh, & Chi, 2011), toponymic 

references found in users’ publicly-posted message text (Stock, 2018) and/or 

Latitude and Longitude coordinates deposited in OSN metadata when users 

optionally choose to ‘geotag’ their social media posts (Kumar, Morstatter, & Liu, 

2014). Platform operators, such as Facebook (2018d), also provide many facilities 

(Figure 1-1, p5) for locational targeting; on County or Region, City, Designated 

Market Area (DMA, in the US), Postcode or Business address. 
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Figure 1-1 – Facebook for Business location targeting options (Facebook, 2018d) 

Advertisements can be displayed to all Facebook users in (or within a radius of) 

selected locations, users who live in those locations (also ‘validated’ by Internet 

Protocol, IP, address), users currently in those locations (‘as determined only by 
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mobile device’) or people just passing through (‘as determined by mobile device 

[when it is] greater than 100 miles from their stated home location from their 

Facebook profile’). Other major social media or ‘destination’ websites operated by 

Google (2018c), Instagram (2018a), Snapchat (2018a), Twitter (2018a) and YouTube 

(2018) offer broadly similar facilities to advertisers – or political campaigners – 

using their services. All also offer targeting on age, basic demographics (e.g., 

gender) and, in several cases, on more advanced behavioural or similarity traits 

(e.g., interests and ‘Lookalike Audiences’ in Facebook’s case). It is currently unclear 

whether recent attempts to distort the outcome of democratic elections through 

geo-behavioural targeting, a type of online gerrymandering, have shown clear 

‘monolithic effects [but] the impact of social media in political campaigning around 

the world is undeniable’ (Dimitrova & Matthes, 2018). 

Steiger, de Albuquerque, & Zipf (2015, p816) have noted that coordinate-geotagged 

OSN interactions, sourced primarily from Twitter, have demonstrated high degrees 

of utility in ‘research on event detection [particularly in the] investigation of 

abnormal spatial, temporal and semantic tweet frequencies [surrounding] disaster 

and emergency [situations].’ The current research uses a mixture of coordinate-

geotagged and non-coordinate-geotagged social media data from Facebook and 

Twitter to determine whether a similarly high level of utility may be observed in 

political contexts. Understanding how different classes of social media users imprint 

their message text with place or, less frequently, space – or consume, link to and 

share 3rd party Uniform Resource Locator (URL) content imprinted with place – is 

essential when attempting to accurately track the downstream diffusion of 

deliberately geo-targeted political advertising.  

Computational techniques have been used in this study to sample, collect, store, 

query, map and measure any ‘geographicality’ (Relph, 1985) expressed in publicly-

posted OSN interactions, the message text and metadata bundles downloadable 

from several social network platforms. As Relph (1985, p16) has noted, ‘The 
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experiences of places, spaces and landscapes in which academic geography 

originates are a fundamental part of everyone's experience.’ Different forms of 

geographical expression, including toponymic references to place in message text 

and linked/shared content and the spatial coordinates deposited alongside 

messages in OSN metadata by geotagging users, are widely-made in social media 

discourse. This is especially true during elections, which are both political and 

geographical events; defined in modern democracies as much by the concepts of 

‘territorial, representative’ constituencies (Rehfield, 2005) and ‘place’ (Johnston & 

Pattie, 2006) as by the exigencies of political candidacy and/or entrenched local 

allegiances. 

Over 8 million OSN interactions created by ~2.4 million users, ~90% sourced from 

Twitter and ~10% from Facebook, have been recorded and analysed (Chapter 4, 

p118) in this research. Typically, only a small proportion (~1-2%) of Twitter 

interactions are geotagged with Latitude and Longitude coordinates (Leetaru, 

Wang, Cao, Padmanabhan, & Shook, 2013) and similarly low coordinate-geotagging 

rates are reported here (Chapter 5, p186). Large absolute numbers of these small 

percentages of coordinate-geotagged OSN interactions have, however, often been 

used somewhat uncritically (Bertrand, Bialik, Virdee, Gros, & Bar-Yam, 2013; 

Compton, Jurgens, & Allen, 2014), as Leszczynski & Crampton (2016) have argued, 

to track or map the spread of message text, sentiment or links shared online. 

Many such studies rely on the Localness Assumption recently identified and tested 

by I. L. Johnson, Sengupta, Schöning, & Hecht (2016) in which it is ‘implicitly 

assumed’ that geo-references in text are proximal to coordinate-geotagging users’ 

recorded locations. This is found to be true in only around 75% of cases, in turn 

raising a more fundamental question; who references place in message text or 

linked/shared content most? Is it the small percentage of coordinate-geotagging 

users on OSN platforms or the majority comprised of their non-coordinate-

geotagging peers? Answering this question helps determine whether messages sent 
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by coordinate-geotagging users may be reliably used as proxies for the flow of all 

geographically-referenced information exchanged on these sites. This knowledge 

may be used to inform tactics subsequently adopted to track the spread of political 

(mis)information disseminated over social media channels since unless, or until, 

legislation forces a change in policy (BBC News, 2018f) political parties, candidates, 

campaign managers and OSN platform operators are not currently compelled to 

reveal online geo-targeting strategies (The Electoral Commission, 2018a). 

Using modern relational and document store databases and several proprietary and 

open-source software systems and APIs the case study data sets have been 

extensively ‘mined’ to provide quantitative measures of expressed geographicality, 

using coordinates and toponymic mentions in message text and linked/shared 

content as an online substitute for ‘understanding people's relationship with places 

and geographical environments’ (Seamon & Lundberg, 2017). As the storage and 

analysis of large numbers of social media interactions present some peculiar 

challenges, especially when handling terse free-form text (Derczynski, Maynard, 

Aswani, & Bontcheva, 2013; Tear & Healey, 2017), the computing environment and 

associated technologies used to produce these outputs are described in detail. The 

work has been conducted within an exploratory spatiotemporal research 

methodology, proposed by N. Andrienko, Andrienko, & Gatalsky (2003), and 

developed here to provide useful exemplars of methods and techniques (Chapter 4, 

p118) which can be used to derive meaning and find locations in a massive research 

data corpus containing over 230 million space-tokenised words. 

Key outputs from the research, results of which are presented in Chapter 5 (p186) 

with a discussion and additional observations given in Chapter 6 (p227), include the 

findings that: 

• Messages from coordinate-geotagging users on Facebook are, on average, 

found to be ‘liked’ slightly less (1.33 vs. 1.50) than those from the universe 

of users. On Twitter, the source of 89.72% of all sampled messages, 
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coordinate-geotaggers have fewer ‘friends’ (median 325 vs. 345) and fewer 

‘followers’ (median 275 vs. 348) than non-coordinate-geotagging users. 

These differences, while apparently small, are highly significant when 

calculated for 2,117,577 Twitter users across the research data corpus, a 

much larger number than that used in many other political studies using 

social media data and a number far larger than any doctoral research 

presented in the era preceding the availability of OSN Big Data. 

• Coordinate-geotagging/non-coordinate-geotagging users’ median Klout 

scores, a measure of ‘influence scoring’ within and across several different 

social networks (Rao, Spasojevic, Li, & Dsouza, 2015), are near identical at 

40 and 41 respectively. Median values, rather than averages, are used here 

as social networks are highly skewed by major celebrities or political figures, 

such as gossip columnist Perez Hilton or former President Barack Obama, 

having many millions of Facebook ‘friends’ or Twitter ‘followers’ (Section 

6.4.6, p279). 

• Analysis of the case study interactions, using three Natural Language 

Processing (NLP) systems and data-mining via Structured Query Language 

(SQL) constructs, shows that coordinate-geotagging users mention 

identifiable locations less in their messages, link to less 3rd party content and 

link to 3rd party content containing fewer identifiable geographical ‘entities’ 

(cities, towns, states etc.) than non-coordinate-geotagging users during the 

two case study events (Sections 5.2.2, p190 and 5.2.3, p205). 

Contrary to expectation, and the research hypothesis set out below (Section 1.7, 

p34), it appears that the small, spatially valuable and (apparently) most 

geographical class of coordinate-geotagging OSN users – whose Latitude and 

Longitude locations allow straightforward and potentially accurate mapping of 

online information consumption and sharing patterns – are somewhat less 

geographically expressive and link to less 3rd party content than OSN users in 

general. Consequently, and significantly, this finding implies that tracking or 
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mapping the spread of places, news, views or opinion by searching for phrases or 

toponyms in message text created by coordinate-geotagging users alone, or by 

searching for specific URL links shared alongside these messages, does not provide 

an adequate proxy for tracking the geographical spread of all politically discursive 

material created and shared online over social media networks. This conclusion is 

reported at exactly the time when electoral officials and other analysts wishing to 

trace the diffusion of micro-marketed, geo-targeted political communications 

disseminated by companies such as Cambridge Analytica or external agents, such as 

Russian ‘trolls’ (BBC News, 2017c) seeking to influence or interfere in democratic 

processes by promoting particular content to particular people in particular places, 

might turn to coordinate-geotagged social media data for precisely this purpose. 

If governments, regulators, researchers or citizens want to know where social 

media content are being consumed or shared, in order to detect potential 

interference in electoral processes through geo-targeted advertising aimed at 

specific marginal ‘swing’ states or constituencies, more transparency in social media 

(meta)data and reporting are required. Policy recommendations in this area are 

outlined in Chapter 6 (Section 6.3, p238) and would involve recording lower-

resolution geographical coordinates in metadata alongside all social media 

interactions; safeguarding users’ high-resolution locational privacy (unless full 

coordinate-geotagging were opted-in to, as now) while providing useful 

geographical oversight. Such a change would, undoubtedly, require legislation to 

regulate the operations of large technology companies; an idea which 

commentators, politicians and mainstream media organisations across the political 

spectrum have suggested now appears increasingly likely (Fildes, 2018; Sunstein, 

2018; Taylor, 2018). 

The following sections of this introductory chapter describe social media data in 

more detail before defining key terms used throughout this thesis and explaining 

the rationale for conducting this research. The hypothesis, aim and objectives of 
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the research are stated and a brief introduction to methodology is given before the 

contribution to knowledge, impact and engagement are set out. The final section 

details the overall structure of this thesis. 

1.2 Social media data 

Social media data are typically, although not exclusively (Marechal, 2016), created 

by individuals as they produce, share and comment on content online. These data 

sets are widely used in government, corporate and academic environments. 

Applications include the surveillance and monitoring of citizens (Fuchs, 2017b), 

business brand and reputation management (Grabher & König, 2017) and wide-

ranging investigations in the Computational Social Science (CSS) and Information 

System (IS) domains (see Kapoor et al., 2017 for a useful summary of major 

research topics). As the ‘participatory’ Web 2.0 model (O’Reilly, 2005) has 

superseded ‘publication’ on the World Wide Web (WWW) several rapidly-evolving 

websites and applications, e.g., Facebook, Flickr, Twitter, Wikipedia and YouTube 

have promoted the creation and enabled the storage and, to varying extents, 

retrieval of increasingly large volumes of User Generated Content (UGC). Some of 

these human-made digital artefacts – consisting of text, shared URL links, audio, 

image or video files – are ‘publicly posted’ online (Hough, 2009) allowing 

widespread, although seldom free (Zelenkauskaite & Bucy, 2016), access to 

potentially huge volumes of material. 

Social media data are generally time-stamped in Universal Time Coordinated (UTC) 

allowing sequencing by creation date and time. Individual records are often 

packaged for downloadable access, with metadata, in JavaScript Object Notation 

(JSON) format (ECMA International, 2013, 2017). Some data, e.g., Flickr images or 

Twitter tweets, may be geotagged with Latitude and Longitude coordinates 

allowing straightforward mapping of social data phenomena (Miller & Goodchild, 

2015). Key demographic or address information, e.g., age, sex, street, town or 

postcode are not, for privacy reasons, available in downloadable social media data, 
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although some, e.g., gender, may be imputed with varying levels of success (Diaz, 

Gamon, Hofman, Kıcıman, & Rothschild, 2016). In some cases, however, and 

especially when users have given sufficient ‘read access’ to 3rd party social media 

applications, these variables may be visible. Aleksandr Kogan’s ThisIsYourDigitalLife 

app collected data in exactly this way, while also exploiting Facebook’s ‘friend’ 

relationships to ‘harvest’ data from inter-connected user accounts, explaining 

Cambridge Analytica’s interest in his work (W. Davies, 2018). 

The two prominent OSNs studied most frequently in social science research are 

Facebook, founded in 2004, and Twitter, founded in 2006. These sites, or 

‘platforms’ (Barreneche & Wilken, 2015), are now accessed by >2 billion and >300 

million Monthly Active Users (MAU) respectively (Facebook, 2018b; Statista, 

2018b). Facebook (2018b) claim that 66% (1.37 billion) of its user base are Daily 

Active Users (DAU), thought to upload >350 million images (Macagba, 2017) and 

share 4.75 billion content items every day (Fu, Wu, & Cho, 2017). Twitter, which 

does not report DAU statistics, is thought to publish ~500 million tweets per day 

(Worldometers, 2018). Massive usage of Facebook has necessitated development 

of complex, large-scale storage infrastructures designed to handle daily multi-

petabyte (1015 bytes) uploads of text, image and video content (Wiener & Bronson, 

2014). Twitter data scientists, likewise, describe ‘plumbing’ together multiple ‘Big 

Data’ (Magoulas & Lorica, 2009) software systems to run ‘jobs [accomplishing] 

everything from data cleaning to simple aggregations and report generation to 

building data-powered products to training machine-learned models for promoted 

products, spam detection, follower recommendation, and much, much more’ (Lin & 

Ryaboy, 2013, p6). 

End users experience fast, responsive and highly-personalised websites and mobile 

applications which promote networked content sourced from ‘friends’ (Facebook) 

or other user accounts being ‘followed’ (Twitter). Increasingly, as the two major 

operators have developed successful ‘advertising monetisation’ models (N. 
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Newman, Fletcher, Levy, & Nielsen, 2016), Facebook ‘walls’ and Twitter ‘timelines’, 

the personalised home pages users navigate around on these sites, have also 

featured targeted interjections from advertisers, which may include both ‘real’ and 

‘fake’ news (Hogan, 2018) and ‘clickbait’ (Kirkby, 2016). OSN users are encouraged 

to constantly engage in continual exploration of content through user interfaces 

featuring ‘infinite’ or ‘never ending’ page scrolling (J. Kim, Zhang, Kim, Miller, & 

Gajos, 2014) and are psychologically rewarded for ‘liking’ content, ‘retweeting’ 

posts or building large ‘friend’ or ‘follower’ networks through addictive triggers 

which have been deliberately designed-in to most social network applications 

(Andersson, 2018; Andreassen, Pallesen, & Griffiths, 2017). 

Social media data consumers in government, commerce or academia may 

download or ‘stream’ publicly-posted data either directly through a number of 

individual publishers’ APIs (Facebook, 2018a; Lane, 2017; Twitter, 2017) or by using 

3rd party social data aggregators, such as DataSift, which ‘[manages] upstream API 

integration and [provides] a single-point-of-access to upwards of twenty individual 

social media data sources’ (Tear, 2014, p223). A second major aggregator, GNIP, 

recently acquired by Twitter, offers access to the full ‘Firehose’ of current and 

historic tweets and is now the only such source (Hern, 2014). Twitter is the most 

widely researched OSN platform, ‘despite being only 11th in global rankings by 

number of users’ (Stock, 2018, p227). Twitter’s Streaming API, through which it is 

possible to freely capture a 1% sample of all social media interactions posted on the 

site in real time (Stone, 2006), is chiefly responsible for this bias (Tufekci, 2014). 

Many other sources of social media data do, however, exist. DataSift (2018), for 

example, offers ‘free real-time monitoring’ of Wikipedia edits, alongside paid-for 

access to feeds aggregated from news, social network, video and blogging sites 

including Blogger, DailyMotion, IMDb, LexisNexis, NewsCred, Reddit, Topix, Tumblr, 

WordPress, YouTube and many other smaller sites. Rising stars of the OSN world, 

such as Instagram (2018b) and Snapchat (2018b), have also enabled API 
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functionality. Instagram’s images, for example, have recently been ‘fused’ with 

Twitter text in a ‘social sensing’ experiment (Giridhar, Wang, Abdelzaher, Amin, & 

Kaplan, 2017). The photographic image storage and sharing site Flickr (2018) offers 

an API which has been used, e.g., to detect and geolocate images of endangered 

wildlife species in protected areas for criminological research (Lemieux, 2015). 

Google+, the OSN developed by the Web search giant, also offers ‘read-only access 

to public data’ through its own API (Google, 2018a). In use, all of these social media 

data sources may be queried to subset manageable numbers of records for further 

analysis. The potential for deriving geographical value from sampled social media 

data is discussed below. 

1.3 Do social media data have any geographical value? 

The availability and use of geotagging functionality on OSN websites has provided 

Geographical Information Scientists (‘GIScientists’), geographers and others 

accessing data from Twitter, since 2009 (Sarver, 2009), and Facebook, since 2010 

(Parr, 2010), with significant amounts of ‘Volunteered’ (Goodchild, 2007) or 

‘Ambient’ (Stefanidis, Crooks, & Radzikowski, 2013) Geographic Information 

(VGI/AGI). Coordinate-geotagging involves the practice of sharing a posting location 

alongside message text or other content, available in social media interaction 

metadata as a Latitude and Longitude pair. Many articles and maps, both in the 

academic literature and more widely published in print or on the Web, have 

exploited coordinate-geotagged OSN data to produce a variety of geographical 

outputs. Different types of coordinate-geotagged or ‘geosocial’ (Bahir & Peled, 

2013) Big Data have been used to monitor road traffic congestion (Work, Blandin, 

Tossavainen, Piccoli, & Bayen, 2010), manage crisis events (Goodchild & Glennon, 

2010) or plot multiple attributes of London life (O’Brien & Cheshire, 2014). Steiger, 

de Albuquerque, et al. (2015) provide a useful summary of the many application 

domains using coordinate-geotagged OSN data. 
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Typically, and somewhat unfortunately for geographers, only small percentages of 

social media interactions are geotagged with Latitude and Longitude coordinates. 

Leetaru et al. (2013) report that just 1.6% of ~1.5 billion Twitter interactions 

analysed in their study contained ‘Exact locations’. Slightly higher rates have been 

reported elsewhere (Croitoru, Crooks, Radzikowski, & Stefanidis, 2013) with 

variability attributed to event type (e.g., an elevated 16% following the Fukushima 

nuclear disaster in Japan), cultural practice (e.g., some nations use OSNs more 

frequently than others) and differing technological factors (e.g., smartphone 

adoption rates). While widely-used in many countries there are also notable ‘black 

holes’ in worldwide OSN coordinate-geotagged space, particularly in North Korea 

and China where neither Facebook or Twitter are allowed to operate (Graham, 

Stephens, & Hale, 2013; Leetaru et al., 2013; M. S. Weber & Monge, 2011). 

‘Place’ is more commonly used than ‘space’ in OSN communications. Frequent 

toponymic mentions of place are found in both message text and associated 

interaction metadata (Gelernter & Mushegian, 2011; Pavalanathan & Eisenstein, 

2015; Stefanidis, Cotnoir, et al., 2013). Coordinate-geotags, when present, are most 

commonly appended to OSN interactions by smartphone ‘apps’ (S. Li et al., 2016; 

Mittelstadt, Allo, Taddeo, Wachter, & Floridi, 2016; Wei, 2013) installed on mobile 

devices equipped with Global Positioning System (GPS) chipsets designed to 

capture and/or share locational data (Kumar et al., 2014; L. Li, Goodchild, & Xu, 

2013). While most users’ mobile devices are perfectly capable of imprinting 

coordinates alongside their Web or OSN posts geotagging is an ‘opt-in’ feature 

which users must explicitly enable in their software application (Sui, 2017), 

although reports have surfaced which suggest that Google collected Android phone 

users’ locations ‘even when location services [were] disabled’ (Collins, 2017). Few 

users choose to deliberately activate geotagging facilities (Tasse, Liu, Sciuto, & 

Hong, 2017) and, consequently, most mapping and geographical analyses of social 

media interactions are enabled not by the majority of OSN users, but by a distinct 

minority who choose to post with coordinates. It is thought that low rates of 
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coordinate-geotagging amongst social media users reflect a strong desire to protect 

‘locational privacy’ online (Cottrill, 2011; de Souza e Silva, 2013; Tsou & Leitner, 

2013) although Egelman, Felt, & Wagner (2013, p21) have found that some users, in 

a more generic context, may ‘view the location permission [request on Android 

smartphones] as an indicator of desirable functionality rather than an indicator of 

privacy risk.’ C. W. Chang & Chen (2014, p36) have found that study participants 

‘were more likely to disclose their location on Facebook if their friends did so, a 

concept called subjective norm’ while others (Cottrill, 2011) have suggested that 

press coverage of tongue-in-cheek websites such as PleaseRobMe.com (Van Grove, 

2010) have alerted users to the dangers of posting coordinates online, where 

differences in ‘home’ and ‘away’ locations can easily be used to infer presence or 

absence with potentially dire consequences. Overall it appears that most OSN users 

have no interest in coordinate-geotagging and do not turn the feature on, a) unless 

their friends do so, or; b) they feel the usefulness of the feature, even if used 

temporarily (Tasse et al., 2017), outweighs their more general predisposition to 

safeguard locational privacy. 

As a ~1-2% function of the ‘vast’ volume of social media interactions made online 

(S. C. Lewis, Zamith, & Hermida, 2013), absolute numbers of coordinate-geotagged 

posts used in research may be high, particularly if a long-running OSN recording 

filtered on the presence of coordinates has been used. Several long-term studies 

designed to capture and map very large numbers of coordinate-geotagged posts 

have been reported, analysing geotagging rates (Leetaru et al., 2013), socio-

economic phenomena (L. Li et al., 2013), global patterns of human synchronization 

(Morales, Vavilala, Benito, & Bar-Yam, 2017) and the demographics of coordinate-

geotagging users (Sloan & Morgan, 2015). Physical devices, hardware and software 

amalgams such as the ‘Tweet-o-meter’ developed by University College London’s 

Centre for Advanced Spatial Analysis (CASA), have also been produced; designed to 

continually update with coordinate-geotagged Twitter tweets made around 16 

major world cities (S. Gray, Milton, & Hudson-Smith, 2015). 
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To varying degrees these works all rely on the assumption that ‘this one percent [of 

spatialised interactions] is already large enough’ for meaningful geographical 

analyses (Jiang, Ma, Yin, & Sandberg, 2016, p349). Many studies also implicitly 

assume, incorrectly in around 25% of cases as I. L. Johnson et al. (2016) have 

demonstrated, that a high degree of ‘localness’ is exhibited in coordinate-

geotagged OSN interactions; i.e., that locations mentioned in spatialised OSN 

message text are proximal to the coordinates of the post. 

The current research questions whether there is an over-reliance on ‘geosocial’ 

data deposited by just ~1-2% of all social media users and whether expressions of 

‘place’ in message text and linked/shared content are highly correlated with ‘space’ 

in coordinate-geotagged OSN interactions. The work does not repeat I. L. Johnson 

et al.'s (2016) study, by comparing coordinate geotags to locations derived from 

toponymic references in adjacent message text, but addresses a more fundamental 

question: who makes, or links to external content containing, the most place-based 

references on social media networks; coordinate-geotagging or non-coordinate-

geotagging users of these sites? Answering this question, to determine the 

toponymical representativeness of coordinate-geotagging users, helps determine 

whether or not this minority group may be used as ‘markers’ to accurately and 

spatially, through their Latitude and Longitude coordinates, trace the geographical 

diffusion of politically discursive material. 

1.4 Defining key terms 

1.4.1 Contentious meaning(s) of ‘space’ and ‘place’ 

The preceding sections have detailed the background to this study (Section 1.1, p1), 

introduced social media data (Section 1.2, p11) and discussed whether, and how, 

social media data might offer any geographical value to researchers (Section 1.3, 

p14). Concepts surrounding the identification of ‘space’ and ‘place’ in social media 

(meta)data have been outlined, yet these two terms – whose nuanced and 
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multifarious meanings are amongst the most heavily contested in academic 

geography and related social science disciplines (Hubbard & Kitchin, 2011) – require 

further definition as they apply to the current research. Definitions of several key 

terms used throughout this thesis are given in the following section. 

1.4.2 Definition of key terms used in this thesis 

Agnew (2011) has suggested that ‘place becomes a particular or lived space’ as 

humans associate a ‘location somewhere’, or their occupation of that location, with 

its spatial (or locational) position. Place, therefore, may take on multiple meanings 

or refer to spaces – the living room, the home, the home town or the country – 

which have very different geographical extents and which may vary, conceptually, 

from one person to another. Social media interactions holding discursive text, or 

text-based metadata, are not immune from such semantic or conceptual 

dichotomies; a Twitter tweet containing the word ‘Kansas’ may refer either to the 

US State of that name or to Kansas City, or to both. Equally, depending upon 

context, the mention might be shorthand referring to a popular baseball or football 

team located in the State or City in question, or to some other location or logical 

entity altogether (e.g., the Wildcats football team of Kansas State University). Place 

has social meaning, but determining the context within which a place is mentioned 

in social media message text, and the exact meaning implicit in that mention of 

place, is not necessarily a straightforward task. 

Senses of known-place(s), affirmed-place(s) and space(s), some of which may be 

accompanied by apparently ‘accurate’ Latitude and Longitude coordinates, are 

often highly conflated in social media data. Users of Twitter, for example, when 

registering, are asked ‘Where in the world are you?’ (Hecht et al., 2011) and may 

just as reasonably answer ‘BRICK city bitch’ or ‘Somewhere, Overthere’ as ‘Concord, 

NC’ or ‘iPhone: 40.699490,-73.891556’. Difficulties inherent in identifying and 

parsing Potential Geographic Information (PGI) in free-form social media message 

text and associated (meta)data are amplified considerably when, as in this research, 
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place-based geographical references must be detected computationally (Section 

4.4, p147). Consequently, and as huge data volumes preclude individual human 

examination of over ~8 million social media interactions, necessarily focused 

definitions of ‘space’ and ‘place’ are adopted in this research: 

• Space – Refers in this thesis to geographically and explicitly locational data, 

i.e., to a point (most often) or a geographical extent (much less frequently) 

defined by one or more pairs of Latitude and Longitude coordinates. Almost 

all space-based data emanates directly from the small subset of coordinate-

geotagged social media interactions in the research data corpus. However, 

additional spatial data (or ‘spatialities’) may be inferred from non-

coordinate-geotagged interactions either by post-processing (meta)data or 

by ‘geoparsing’ message text to append coordinates, where possible, to 

detected references of place. 

• Place – Refers in this thesis to computationally-identifiable geographical 

references in text, i.e., to toponymic place names, e.g., of towns, cities, 

counties, states or countries etc. Information Extraction (IE) and Named 

Entity Recognition (NER) techniques from Natural Language Processing 

(NLP) are used to detect such geographical references in social media data 

and linked/shared content. The software systems used either rely upon 

large, open-source gazetteers of toponymic place names (e.g., the ~11 

million records available from GeoNames, 2016) or use smaller gazetteers 

supplemented by logical ‘rules’ (Tear & Maynard, personal communication, 

2018) to boost place identification based upon the co-occurrence of certain 

terms (e.g., ‘Isle of…’, ‘Mount…’, ‘Cape…’) associated with place names. 

Space, where it exists in social media interaction (meta)data, may generally be 

regarded unambiguously; the Latitude and Longitude coordinates of a user’s 

location have been recorded alongside their message text by a GPS-equipped 

mobile device just at the moment of message creation. Exceptions exist, of course, 
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such as the production of coordinate-geotagged messages by robotic networks 

(‘botnets’), described by Marechal (2016) and exemplified by Echeverría & Zhou's 

(2017) detection of the ‘Star Wars’ botnet, responsible for creating 1.2 million 

coordinate-geotagged Twitter tweets in North America and Western Europe; or 

through the presence of unlikely, or nonsensical, spatial coordinates such as the 

227 interactions with 0 Latitude and 0 Longitude in the research data corpus. 

Place, in social media data, retains many of the elements of ambiguity identified by 

Tuan (2001) and other geographical theorists but is referenced, on the admittedly 

narrower grounds adopted here, much more widely in message text, metadata and 

linked/shared content than space (Section 5.2.2, p190 and 5.2.3, p205). In addition, 

there is both, a) some overlap between ‘space’ and ‘place’ in digital social media 

data, and; b) some potential to ‘move’ from space to place, or vice versa. For 

example: 

a) The metadata of some OSN interactions records users’ time zone offsets 

relative to Greenwich Mean Time (GMT) in seconds. While these values 

(e.g., 14,400 or -18,000) are neither explicitly space- or place-based, 

converting seconds to hours and minutes allows data fusion with world time 

zone boundaries enabling the small-scale worldwide mapping of online 

activity (Figure 4-22 and Figure 4-23, p181). 

b) The Latitude and Longitude coordinate pairs deposited alongside indvidual’s 

geotagged interactions may, likewise, be ‘fused’ to official areal units such 

as US or UK Census boundaries using GIScience techniques (Section 6.4.4, 

p262). This process enables other types of imputation and reporting which, 

by exploiting the geographical hierarchy implicit in US and UK Census data 

(e.g., US Census Tracts aggregate to Counties and States; UK Output Areas 

to Wards, Local Authorities and Counties etc.) may yield place-based results 

from purely spatial coordinate data. Conversely, and as an example of the 

movement from place to space, all toponymic place names detected in 
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message text and successfully geoparsed may be mapped to expand the 

locational scope of the case study data sets beyond just the small subset of 

spatially coordinate-geotagged social media interactions present in the 

research data corpus (Figure 5-12, p224 and Figure 5-13, p224). 

A final term, used throughout this thesis, encapsulates the different space- and 

place-based meanings in social media data outlined above: 

• Geographicality – Refers in this thesis to the multiplicity of geographical 

forms of expression evident in social media data, ranging considerably both, 

a) in scale, from world time zones covering parts of continents to point-

based locations of message creation, and; b) in nature, e.g., incorporating 

mentions of place(s), again at many different scales, either in message text 

or linked/shared content, which may or may not be amenable to spatial 

augmentation through geoparsing. Measuring and scoring geographicality in 

social media (meta)data (Section 4.6.1, p164) enables cross-comparison of 

space- and place-based facets of geographical expression at several levels; 

by case study event; by OSN platform; by user and, most atomically; by 

interaction (i.e, individual message and metadata bundle). The results of this 

work are presented in Chapter 5 (p186) with additional findings presented in 

Chapter 6 (p227). 

In their Introduction to Key Thinkers on Space and Place, a bibliographic 

compendium detailing theoretical contributions from 66 scholars of geography and 

related social science disciplines, Hubbard & Kitchin (2011, p7) state that ‘given the 

way space and place have been operationalised, they remain relatively diffuse, ill-

defined and inchoate concepts.’ In this thesis, meanings of ‘space’ and ‘place’ are 

measured and operationalised much less diffusely, having been clearly defined 

above. While necessarily focused, the definitions adopted here enable machine-

based classification of very large volumes of social media data; affording an 

opportunity to determine how space and place are used online, and whether 
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different user groups – especially the most-spatial, coordinate-geotagging, users of 

two popular Online Social Network platforms – make differential references to 

place. The rationale for conducting this research is set out below. The relevance of 

determining who makes the most mention of place in message text, or links to and 

shares content making the most mention of place via online social media channels, 

is detailed later in Section 1.6 (p30). 

1.5 Rationale for the research 

1.5.1 Personal motivation 

This research project is informed by much earlier work (Tear, 1997), undertaken 

during the relative infancy of the World Wide Web, to develop a website covering 

the 1997 UK General Election. At that time, in what is now thought of as the ‘Web 

1.0’ era (Helles, 2013), the project involved the collection and publication of facts 

(UK constituency boundary maps, turnout and voting statistics, candidate and 

constituency profiles) and the provision of search functionality (clickable maps, 

postcode to constituency lookups etc.) enabling public access to those facts. 

The 1997 UK General Election website was widely-used, recording well over one 

million ‘hits’ in web server log files which were analysed to monitor site 

performance, understand load issues and identify popular pages (Chu, Wipfli, & 

Valente, 2013). Heatmaps generated using GeoIP mapping functionality (MaxMind, 

2012; Appendix 1, p369) built in to Webtrends (2018) log file analysis software 

showed fascinating, and geographically uneven, patterns of public information 

access to the published material. The ‘cash for questions’ scandal, for example, 

which prompted BBC journalist Martin Bell (Independent) to stand against 

incumbent Neil Hamilton (Conservative) in the Tatton constituency (Farrell, 

McAllister, & Studlar, 1998) sparked nationwide interest in that page, while other 

pages were generally viewed by users more proximal to the constituency in 

question. 
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Accepting known imperfections in IP addressing, e.g., the fact that all America 

Online (AOL) traffic originated from just a few IP addresses, and the varying spatial 

accuracy of the GeoIP database it was reasonably straightforward, and has now 

become commonplace for webmasters (Google, 2018b), to map the spatial origin of 

requests for given pages; to know where people access pages from and which pages 

they access. 

 

Figure 1-2 – 1997 UK General Election: World map showing GeoIP-derived geographical 
access to the website (~10% of page views, recovered from an archival fragment on Digital 

Audio Tape, DAT) 

Early work to model distance decay effects in web server information flows 

(Murnion & Healey, 1998, p285) had suggested that latency, time-delays in network 

communications, might be used as a proxy ‘to determine the effect of Internet 

distance on the number of expected visits to a web server.’ Sharp distance decay 

curves were observed in worldwide access to UK academic web servers yet the 

1997 UK General Election website was both widely accessed from overseas, 

particularly from the US and Europe (Figure 1-2, p23), and was also differentially 

accessed page-by-page as users consumed information about each of the UK’s, 

then, 641 parliamentary constituencies. Some of these differences could be 

attributed to elevated levels of interest prompted by events during the 1997 

election campaign (e.g., Tatton), or large numbers of inbound links to certain 
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constituency pages from 3rd party websites, but others could not. This raised the 

tantalising prospect that further analysis of geographical patterns of politicised 

online information consumption might prove informative, or perhaps even 

predictive in terms of modelling turnout or voting intention, if enough 

representative political opinions were known. In 1997 there was no easy way of 

knowing what large numbers of people said or thought as they consumed political 

information online. The arrival of social media platforms in the mid-2000s 

dramatically reversed this deficiency. 

1.5.2 Wisdom of the Crowds? 

Only recently has it become possible, as ‘Web 2.0 desires to read, write, and share 

personal information’ have developed (Jung, 2015, p53), to know what large 

numbers of people are saying or thinking as they comment on, share and interact 

with content online. The rapid growth of OSNs such as Facebook and Twitter has 

brought billions of users and countless user messages into the public domain. UGC 

now abounds and the traditional communications model of Habermas' (2011) 

Public Sphere incorporating governmental, judicial and media power-players 

appears to have moved towards a more pluralistic model involving overlap between 

public and newly digitally-enabled ‘private’ spheres (Papacharissi, 2010). 

Political opinions expressed online are now widely-made, shared, and increasingly 

accessible for download from OSN platforms; some records are coordinate-

geotagged and many more make frequent toponymic mention of place (Han, Cook, 

& Baldwin, 2014). For privacy reasons, other than to site operators, IP addresses are 

not made available in OSN data downloads; removing one of the easiest – although 

not necessarily accurate (Backstrom, Sun, & Marlow, 2010) – methods to 

geographically estimate the location of social media communications. If, as 

Surowiecki (2004) has suggested, the ‘Wisdom of the Crowds’ really can provide 

more accurate prediction, is it possible that ‘mining’ massive amounts of OSN data 

for spatiotemporally expressed political opinion could help to detect events, or 
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possibly even ‘call’ an election? After all, as some scholars have suggested, ‘there is 

a strong relationship between political information [consumption, news seeking] 

and political participation; the more we know about politics, the more, and more 

effectively, we participate in political activities’ (Feezell, 2016, p495). 

 

Figure 1-3 – US2012: Number of ‘mentions’ of the Candidates’ surnames in sampled 
Twitter tweets, retweets and Facebook posts 

Figure 1-3 illustrates just one sort of analysis made possible using OSN data, a 

modern Relational Database Management System (Oracle 12c RDBMS) and a query 

written in Structured Query Language (SQL). Some 1,718,667 records collected 

from Facebook and Twitter during the 2012 US Presidential Election campaign 

(Section 4.2.4.1, p126) have been queried on Candidate’s surname and counted by 

day using SQL (Appendix 11 listing 1, p479). Daily counts have been plotted using 

Tableau (Felt, 2016; Tableau, 2017b) data visualisation software (Section 4.5.2, 

p161). The chart shows that Obama largely leads Romney in mentions throughout 

the campaign but that Romney is mentioned more often during the three large, and 

clearly visible, temporal peaks for both candidates coinciding with the three 

televised US 2012 Presidential Candidate Debates. Aside from these peaks, Romney 

only ‘beats’ Obama in mentions on one other occasion and mentions of Obama rise 

rapidly on election day, 6 November 2012. Obama, of course, goes on to win the 

2012 US Presidency. Opinion polls at the time, however, frequently suggested that 
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Romney was level-pegging with Obama (Langer, 2012) or even forging ahead 

(Gallup, 2012). Can social media data collection, import, storage and query using 

one reasonably straightforward SQL statement prove a ‘Wisdom of the Crowds’ 

effect or does  further academic enquiry into online information consumption 

behaviours and by-products, including many works which discount the ability of 

OSN data to provide predictive political power (Gayo-Avello, 2012b; Iacus, 2014; 

Murthy, 2015; Vergeer, 2013) suggest better alternative avenues for research? 

1.5.3 Academic context 

The detailed and extensive literature search and review presented in the following 

chapter, a) confirms the validity of examining politicised social media data, b) 

provides many reasons to question the usage of OSN data for electoral prediction, 

and; c) identifies several gaps in the literature addressed by this research. These 

strands of academic thought are introduced below and more fully explored in 

Chapter 2 (p51). 

Prominent geographers such as Elwood, Goodchild, & Sui, (2012, p571) were quick 

to note that the ‘convergence of newly interactive Web-based technologies with 

growing practices of user-generated content disseminated on the Internet [are] 

generating a remarkable new form of geographic information.’ This ‘Volunteered 

Geographic Information’, the authors suggested (p571), ‘represent[s] a 

paradigmatic shift in how geographic information is created and shared.’ Kuhnian 

paradigmatic shifts surrounding social media data availability, usage and analytical 

possibilities have also been reported in the disciplines of Politics (Jenkins, 

Slomczynski, & Dubrow, 2016), Communications (Van Dijck, 2014) and Technology 

(Olshannikova, Olsson, Huhtamäki, & Kärkkäinen, 2017). Just under 250 papers 

(20%) from a research literature corpus comprised of over 1,250 articles (Section 

2.2.2, p57) contain the word stem ‘paradigm’. Social media research, in political 

contexts or otherwise, is a rapidly growing area (Figure 2-2, p57). In the academic 

literature corpus curated here Facebook is mentioned in 600 papers (48%) and 
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Twitter in over 650 (52%). While some (e.g., Fuchs, 2017a) have criticised ‘Internet 

Studies’ for a lack of theory and others (Boyd & Crawford, 2012; Tufekci, 2014) have 

identified significant methodological problems inherent in OSN ‘Big Data’ research, 

the corpus of academic literature in this area is relatively recent (as are the 

networks themselves), is still growing and still contains gaps (Section 2.8, p88). 

Published research has shown that political prediction using OSN data is difficult 

(Phillips, Dowling, Shaffer, Hodas, & Volkova, 2017) and that a narrow-minded focus 

on coordinate-geotagged OSN interactions alone is inadvisable (Crampton et al., 

2013; Leszczynski & Crampton, 2016).  

Repeated attempts to predict political events from social media data in the 

scientific literature (Franch, 2013; Jain & Kumar, 2017; Tumasjan, Sprenger, 

Sandner, & Welpe, 2010), some claiming success and others reported in the 

mainstream media (BBC News, 2016), have been comprehensively criticised by 

Gayo-Avello (2012a, 2012b, 2013) and more recently reviewed by Phillips et al. 

(2017). Gayo-Avello (2012a, p2) identified ‘eight flaws in […] research regarding 

electoral prediction’ and suggested that the most significant of these is that ‘it’s not 

prediction at all! [as all papers reviewed] claim that a prediction could have been 

made; i.e. they are post-hoc analysis and, needless to say, negative results are rare 

to find.’ Academic publishing schedules may be partly to blame, but challenges 

surrounding Twitter ‘vote counting’, the application of sentiment analysis to 

message text and demographic unrepresentativeness, amongst others (Section 7.3, 

p292), suggest that the challenge of electoral prediction using social media data is 

considerable, both in terms of reliable ‘location inference’ and the separation of 

‘buzz’ from voting intent (Han et al., 2014; Jungherr, Schoen, Posegga, & Jürgens, 

2017).  

Phillips et al. (2017, p10), in their systematic review, have stated that ‘Poor findings 

in the field of election prediction overall suggest that volume of [social media] posts 

alone, with or without sentiment analysis, is likely a poor method for predicting 
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election outcomes.’ Jungherr et al. (2016, p1) have also highlighted the intrinsic 

dangers of using Twitter-sourced OSN data for political prediction, noting that ‘All 

indicators tested […] suggest caution in the attempt to infer public opinion or 

predict election results based on Twitter messages. In all tested metrics, indicators 

based on Twitter mentions of political parties differed strongly from parties’ results 

in elections or opinion polls. This leads us to question the power of Twitter to infer 

levels of political support of political actors. Instead, Twitter appears to promise 

insights into temporal dynamics of public attention toward politics.’ 

 

Figure 1-4 – US2012: World map showing sampled geotagged Twitter tweets and retweets 
(n=168,970) 

As Figure 1-4 shows, using a data visualisation package (Tableau in this case) or 

Geographic Information System (GIS) and the Latitude and Longitude pair 

embedded within the metadata of some social media interactions, it is extremely 

straightforward to map coordinate-geotagged social media messages. It is possible 

to visualise coordinate-geotagged ‘mass sentiment’ (Edwards, Housley, Williams, 

Sloan, & Williams, 2013) and, by clicking on the map markers in the software or 

executing a query for a word or phrase, to know who is saying what, when and 

where (Yuan, Cong, Ma, Sun, & Thalmann, 2013). Mapping coordinate-geotagged 

interactions is far from difficult (Crampton et al., 2013) but, in any given study, 
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there are typically not enough spatialised records to model OSN sentiment at a 

local level, the precursor to any accurate electoral prediction (Giuliani, 2018), even 

if it were believed that text-mining of often terse OSN message text could 

accurately infer political preferences. 

Leszczynski & Crampton (2016, p3), have warned against ‘a fixation on ‘‘the geotag’’ 

[which] engenders a fetishization of data that is mapped or mappable’ tending 

towards ‘an implicit commitment to a spatial ontology’ which is ‘divorced from 

social relations.’ As so few social media interactions are spatially tagged an over-

reliance on coordinate-geotagged data is flawed, and a total reliance probably 

dangerous. OSN data does, however, hold a larger amount of ‘Ambient Geospatial 

Information’; many Facebook posts or Twitter tweets contain ‘geographic 

footprints’ in the form of toponymic mentions of place within message text or in 

associated metadata fields (Stefanidis et al., 2013, p319). A great deal of effort has 

been expended attempting to geocode or ‘geoparse’ locational references in text 

(Ajao, Hong, & Liu, 2015; Jurgens, 2013; Poulston, Stevenson, & Bontcheva, 2017; 

Purves, Clough, Jones, Hall, & Murdock, 2018) but geographers and social scientists 

have not answered the more fundamental question addressed by this research; 

given so many geotagged OSN interactions are used as indicators of localised 

opinion (I. L. Johnson et al., 2016) who makes most mention of detectable 

geographical references in message text and linked/shared URL content, 

coordinate-geotagging or non-coordinate-geotagging users of social media sites? 

Rzeszewski & Beluch (2017, p3), summarising the current state of academic 

research into ‘Geosocial Media Production’, have suggested that insufficient 

‘attention’ has been focused on the ‘subgroup’ of social media users who choose to 

coordinate-geotag their posts. The research presented here redresses this 

imbalance by contrasting the posting behaviour of this small but significant 

‘subgroup’ of OSN users against that of the non-coordinate-geotagging majority, 

using data from two case studies, and two social media platforms, separated by a 
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period of two years. This is unusual for a social media research project (Gayo-

Avello, 2012a; Stock, 2018; Tufekci, 2014), most of which rely on only one social 

media data source (Twitter) sampled during one event. Coordinate-geotaggers are 

the most explicitly spatial users of online social networks but are they also the most 

geographically expressive? By examining differences in expressions of 

geographicality in message text, interaction metadata and URL link sharing this 

research determines how ‘space’ and ‘place’ are used, referenced and shared in 

politicised OSN discourse, and most widely by whom. 

1.6 Relevance 

Social media users in general (Mellon & Prosser, 2017; Mislove, Lehmann, Ahn, 

Onnela, & Rosenquist, 2011), and coordinate-geotagging users of social media in 

particular (Sloan & Morgan, 2015), are not thought to be representative of the 

population at large. However, improved capabilities to target locations on (Figure 

1-1, p5), or abstract geographical information from (Figure 6-1, p233), social media 

networks raise several defining questions for candidates and political parties 

(Moore, 2016), campaign teams (Buchanan, 2016) and the media (BBC News, 2016). 

The ability of political candidates, such as Barack Obama, to communicate online 

with over 29m Facebook Friends and over 20m Twitter Followers is a remarkable 

innovation in the ‘personalisation’ of political communication (Enli & Skogerbø, 

2013). The potentially ‘Orwellian’ nature of this new form of interaction (Chamley, 

Scaglione, & Li, 2013) has been highlighted, somewhat disconcertingly, by an 

anonymous member of Obama’s campaign team, who reportedly stated 

(McGregor, 2011) that ‘[online] we want to serve you with stuff that you are going 

to like’ and that, in doing so, ‘the information that is interesting to us is 

behavioural.’ Subsequent events during the 2016 US Presidential Election and the 

2016 UK European Union Membership Referendum, characterised by attempts to 

deliberately manipulate democratic outcomes through geo-psychographic targeting 

(Figure 1-5, p31) of social media users (Albright, 2017; Cadwalladr, 2017; Persily, 
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2017), suggests that candidates and/or political parties must increasingly endorse 

such strategies; why else would they spend money on this form of campaigning?  

 

Figure 1-5 – CA (Cambridge Analytica) Political website, outlining company capabilities 
(Cambridge Analytica, 2018) 
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Early analysis of the 2012 US Presidential Election data set collected as part of this 

research suggested that many outputs could be produced, some perhaps reflecting 

contemporaneous online ‘politicking’ (Panagopoulos, Gueorguieva, Slotnick, Gulati, 

& Williams, 2009) as well as potentially partisan mainstream media coverage of 

events (Searles, Smith, & Sui, 2018). Figure 1-3 (p25), for example, has illustrated 

the timeline of counts of ‘mentions’ of the 2012 US Presidential Candidates’ 

surnames, and shows some temporal contradiction with several of the opinion polls 

published at the time. However, these daily counts do not offer anything like a 

predictive model of turnout or political outcomes or allow more detailed mapping 

of political sentiment or voting intention for local areas. Instead, the data tends to 

reveal the spatiotemporal ‘buzz’ (Roy & Zeng, 2015) surrounding events. Figure 1-6 

shows the percentage of population weighted mentions of State abbreviations 

(OH=Ohio, VT=Vermont, etc.) from OSN posts in the US2012 data set.  

 

Figure 1-6 – US2012: Percentage population weighted mentions of State abbreviations in 
interaction message text 

The map has been produced, not by counting the small number of explicitly 

coordinate-geotagged records in the data set, but by looping over a list of US State 

abbreviations and full State names stored in an Oracle 12c database table (Section 

4.3.1.3, p145) and using SQL to count occurrences of these terms in message text 

(‘OH’, Ohio, is illustrated in Appendix 11 listing 2, p479). The number of text 
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matches for each State has been saved, and weighted by 2012 State level 

population estimates (U.S. Census Bureau, 2017). It is apparent that many, but not 

all, of the State abbreviations most mentioned in the OSN research data corpus 

coincide with those defined by contemporary media reports identifying key 

‘Battleground States’ in the 2012 US Presidential Election contest (BBC News, 2012; 

Figure 1-7, p61).  

 

Figure 1-7 – US2012: Battleground States (BBC News, 2012) 

As Figure 1-6 shows, identifying the online social media ‘buzz’ surrounding specific 

areas should be of interest to anyone who votes in geographically bound 

democratic elections. Candidates and political parties are now making increasing 

efforts to accurately target their campaign messages towards voters in the often 

small number of ‘swing’ states or constituencies which typically determine the 

outcome of electoral contests in many modern democracies (Henneberg & 

O’Shaughnessy, 2009; Lilleker et al., 2015; Moore, 2016). Gaining more 
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understanding of how ‘place’ and ‘space’ are used, differentially referenced and 

shared by social media users in politicised online social media discourse is, 

therefore, a highly relevant exercise.  

1.7 Research hypothesis aim and objectives 

Building upon the Localness Assumption identified by I. L. Johnson et al. (2016, 

p515, authors' italics), in which ‘a unit of social media VGI [is implicitly assumed 

almost] always [to represent] the perspective or experience of a person who is local 

to the region of the corresponding geotag’, this research is framed around an 

equally simple hypothesis. 

The Geographicality Assumption tested here asserts that coordinate-geotagging 

users are the most geographically expressive of all OSN users. 

• As I. L. Johnson et al. (2016) have noted, geographical ‘localness’ has been 

widely assumed in most research regarding coordinate-geotagged OSN data. 

This supposition, however, rests upon another equally implicit and, so far, 

untested assumption; that geotagging social media users make at least 

equal, and possibly especially frequent, mentions of place in message text 

when compared to their non-coordinate-geotagging counterparts. 

• We know that only ~1-2% of Twitter interactions are typically coordinate-

geotagged by their creators (Leetaru et al., 2013) and we know that 

toponymic mentions of place are widespread in Twitter and other OSN 

interactions (Gelernter & Mushegian, 2011; Pavalanathan & Eisenstein, 

2015; Stefanidis, Crooks, et al., 2013). 

• We do not know whether coordinate-geotagging or non-coordinate-

geotagging users of Twitter or other OSNs exhibit differential affinity for 

place, in terms either of a) more mentions of place in message text or, b) 

more mentions of place in linked/shared content from URLs found alongside 

message text in OSN metadata. 
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This research tests the assumption that the most ‘spatialised’ class of coordinate-

geotagging social media users are also the most geographically expressive users of 

these sites. Doing so, as previous sections have outlined, will indicate whether 

social media interactions sourced from this minority group can reliably be 

considered representative of all OSN interactions when using place to track the 

diffusion of political opinion, or potentially geo-targeted (mis)information, online. 

1.7.1 Aim 

This research tests the Geographicality Assumption through detailed analysis of 

coordinate and non-coordinate-geotagging users’ toponymic mentions of place in 

OSN message text and linked/shared URL content. Using a range of techniques 

including Information Extraction (IE) and Named Entity Recognition (NER) from 

Natural Language Processing (NLP), alongside more traditional gazetteer-based 

geoparsing approaches, the work answers three research questions: 

1. How can baseline ‘geographicality’ be assessed and categorised in OSN 

data? 

2. Does NLP-detectable ‘geographicality’ in message text increase in line with 

‘spatiality’? 

3. Does NLP-detectable ‘geographicality’ in linked/shared 3rd party content 

increase in line with ‘spatiality’? 

Large volumes of OSN interaction data have been analysed to answer these 

questions. These new forms of online ‘geographicality’ echo the géographicité of 

Éric Dardel (Dardel, 1952), in which the human fascination with the lived 

environment is evidenced through mentions of place. 

1.7.2 Objectives 

Potential Geographic Information (PGI) exists in OSN interaction message text and 

in some associated metadata fields. It is not clear to what extent the sharing of 
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spatial (coordinate) or toponymic (place) references matters; either to those 

reading, reposting, retweeting or otherwise consuming content on social networks, 

or to those analysing such content for an increasingly wide variety of purposes. 

The objectives of this research are to: 

• Sample, record and store sufficient volumes of OSN data to provide good 

case study material to address the research questions. 

• Select and use appropriate ‘Big Data’ technologies to detect toponymic 

mentions of place in text and shared URLs from the OSN case study data. 

• Extract information and mine social media interactions to determine how 

geographical expressions are made by all types of OSN users. 

• Compare results of Information Extraction (IE) operations across political 

events, by system and non-/coordinate-geotagging user classes. 

The research examines ~1.7m OSN interactions recorded during the two-month 

run-up to the 2012 US Presidential Election and ~6.5m recorded during the twelve-

month run-up to the 2014 Scottish Independence Referendum. The political context 

within which the research is framed is now particularly apposite as both succeeding 

scholars, and regulators, embark on even larger-scale investigations into the 

probable (mis)use of geo-behaviourally targeted social media advertising during the 

2016 US Presidential Election and the 2016 UK European Union Membership 

Referendum. 

Results from this research are presented in Chapter 5 (p186) with a discussion and 

additional findings in Chapter 6 (p227). The thesis concludes, in Chapter 7 (p286), 

by asserting several contributions to knowledge, critically reflecting on the work 

conducted and setting out suggestions for future and further research.  
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1.8 Introduction to the research process 

Several different methodologies have been used in this research, including desk-

based literature review, case study-based data collection and computerised data 

storage, exploratory spatiotemporal analysis and software-based visualisation. 

1.8.1 Literature review 

An extensive review of the literature has resulted in the collection of over 1,250 

bibliographic records stored in Mendeley (2016), a popular hybrid desktop/Cloud-

storage computerised reference management system. The most salient concepts in 

the literature have been briefly introduced above (Section 1.5.3, p26) and are 

discussed in depth in Chapter 2 (p51).  

 

Figure 1-8 – Top 100 terms from >1,250 stored article titles rendered as a Word Cloud 

As this research is concerned with data, text, analysis, and visualisation some of the 

same techniques used to mine social media interactions (described later in Section 

4.4, p147) may also be applied to the academic literature corpus itself. Figure 1-8 

illustrates, using a Word Cloud (J. Davies, 2018), the top 100 terms found in over 
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1,250 article titles stored in Mendeley Desktop (Appendix 2, p411). McNaught & 

Lam (2010, p631) find that ‘[word clouds seem] to be particularly useful for studies 

that involve qualitative/thematic analyses of written or transcribed spoken text’ 

specifically offering a ‘tool for preliminary analysis, quickly highlighting main 

differences and possible points of interest [which can] provide an additional 

support for other analytic tools.’ Key words from the (lower-cased) article titles 

shown in Figure 1-8 (p37) include ‘social, ‘political, ‘media’, ‘twitter’ and ‘data’. The 

words ‘geography’, ‘geographic’ and ‘spatiotemporal’ appear in smaller type in the 

word cloud indicating lower word frequency counts for these terms in article titles. 

Table 1-1 – Top 20 journal titles by number of stored articles 

Position Journal References 
1 Computers in Human Behavior 35 
2 New Media & Society 30 
3 Social Science Computer Review 23 
4 Information, Communication & Society 19 
5 International Journal of Geographical Information Science 17 
6 arXiv 11 
7 Cartography and Geographic Information Science 10 
8 Expert Systems with Applications 9 
9 Journal of Broadcasting & Electronic Media 9 

10 Journal of Communication 9 
11 American Behavioral Scientist 8 
12 Big Data & Society 8 
13 Journal of Computer-Mediated Communication 8 
14 Journal of Information Technology & Politics 8 
15 Political Communication 8 
16 Communications of the ACM 7 
17 Electoral Studies 7 
18 European Journal of Communication 7 
19 First Monday 7 
20 Social Networks 7 

 

While this thesis is concerned primarily with geography and geographicality these 

themes clearly exist within a much wider academic context. Table 1-1 shows the 

top 20 journal titles, by number of articles stored in Mendeley, from the research 
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literature corpus. An expressly geographical journal (IJGIS) appears only 5th by total 

number of references collected when references are summed by publication title. 

Leading sources of references include the journals Computers in Human Behavior 

(established 1985), New Media & Society (1999), Social Science Computer Review 

(1983) and Information, Communication & Society (1998). The study of 

geographicality in OSN posts must be contextualised within a wider scholarly 

framework considering poltical, communications and socio-technological aspects of 

social media usage. These themes are more fully explored in Chapter 2 (p51) which 

considers literature and context. 

1.8.2 Case study-based data collection 

Given massive growth in OSN usage, improved availability in the form of access to 

public posts and the fact that so much political activity now takes place over the 

Internet (Hong & Nadler, 2012; Quintelier & Theocharis, 2012; Shehata & 

Strömbäck, 2018), this research uses political case studies to assess the role and 

significance of geography, coordinate and non-coordinate-geotagging users and 

their interactions in these newly emerging contexts. As the research literature 

corpus exhibits considerable cross-disciplinary overlap between subjects the 

selection of political case study material is especially apt. Clark & Jones (2013, p305) 

have confirmed ‘the scope and potential for spatialising new institutionalist studies, 

by demonstrating how fluidities of political behaviours predicated by post-

structural accounts of place and space come to be ‘fixed’ within certain ‘sticky’ 

institutional places. Consequently, we argue that a spatialised new institutionalism 

offers promising conceptual and methodological possibilities for developing 

research collaborations between political geography and political science on the 

placing and spacing of political behaviours.’ Chapter 3 (p94) and Chapter 4 (p118) 

detail the methodology adopted and methods used to capture, store and analyse 

>8 million OSN records sourced from Facebook and Twitter during the two case 

study events to address ‘the great implications of spatialization’ (Ethington & 
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McDaniel, 2007) for ‘political behaviour research’ (Clark & Jones, 2013) addressed 

in this investigation. 

1.8.3 Data storage, analysis, and interpretation 

Over 46GB (210 bytes) of raw OSN data in JavaScript Object Notation (JSON) and 

Comma Separated Values (CSV) formats have been stored and queried using both 

conventional (SQL-based) RDBMSs, Microsoft SQL Server 2012 R2 (2013) and Oracle 

12c (2014c), and a number of Not-only-SQL (NoSQL) alternatives, including the 

MarkLogic (2014) document data store and Apache Software Foundation's (2014) 

Drill running within the MapR (2014) ‘Hadoop ecosystem’ (Cutting, 2013). These 

systems offer competing benefits when importing, storing and querying JSON and 

CSV data files, as well as differences in access and infrastructural integration. 

Section 4.3, p135) describes the rationale behind the choice of database 

management system, Oracle 12c RDBMS, used most widely in this research 

programme following several comparative evaluation exercises. As the research has 

progressed, new software releases have provided functionality missing in earlier 

versions; the effective use of up-to-date technology is, therefore, a defining feature 

of the research, linking theoretical and practical aspects to create the relevant 

research outputs detailed in Chapter 5 (p186) and Chapter 6 (p227). 

1.9 Originality and contribution to knowledge 

1.9.1 Originality 

This research fuses long-established approaches with very recent technological 

developments in computational systems, designed to operate at extremely large 

scale, to examine two unique case study data sets. The principal methods include: 

• Data-mining using the latest generation of RDBMS software and SQL; 

• Information Extraction (IE) using NLP/geoparsing software; 

• Spatiotemporal visualisation using specialist software, and; 
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• Statistical analysis using R (The R Foundation, 2018). 

While some of the approaches are well-established in theoretical terms – NLP, for 

example, stems in part from Turing's (1950) seminal paper Computing Machinery 

and Intelligence – only recently have systems been scaled to work effectively with 

very large data sets (Tablan, Roberts, Cunningham, & Bontcheva, 2012). The 

combinatorial use of these approaches itself contributes to knowledge. As the 

extensive code bases in Appendix 10 (p451), Appendix 11 (p479) and Appendix 12 

(p493) demonstrate, and Lin & Ryaboy (2013) have argued, a great deal of work is 

required to successfully integrate different data sources and software systems in a 

Big Data project. In addition, trialling and participation in beta programmes, has 

resulted in several enhancements to existing software packages which are 

discussed in more detail, below, in Section 1.10 (p43).  

1.9.2 Contribution to knowledge 

The practice of coordinate-geotagging messages on OSNs is a relatively recent 

phenomenon, providing massive amounts of geographically-referenceable data 

produced (primarily) by human ‘social sensors’ (Rosi et al., 2011). Users of OSNs are 

a self-selecting subset of the population and the percentage coordinate-geotagging 

their posts appears to be a low (Leetaru et al., 2013) if somewhat variable one 

(Croitoru et al., 2013). The coordinate-geotagging rate observed here across 

US2012 and SCOT2014 data sets collected in several different ‘Streams’ 

(Appendix 7, p432) falls only in the range 0.86-1.45%. Consequently, OSN 

interactions have been data and text-mined to search for locational references in 

text and linked/shared URL content. In doing so, the work makes use of a ‘software 

stack’ which shares some similarities with the software capabilities detailed in 

Croitoru et al.'s (2013) ‘Geosocial gauge’ and moves ‘beyond the geotag’, as 

Crampton et al. (2013, p138) have advocated, by paying ‘closer attention to the 

diversity of social and spatial processes, such as social networks and multi-scalar 
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events, at work in the production, dissemination, and consumption of [geoweb] 

content’. 

In addition to the original methodological and technological contributions outlined 

in Section 1.9.1 (p40) key, and original, contributions to knowledge from this case 

study research include the findings that: 

• Coordinate-geotagging users of Twitter and Facebook OSNs, a) make fewer 

references to place in their message text (Section 5.2.2, p190), b) link to 

external content making fewer mentions of place in text (Section 5.2.3, 

p205), and; c) make fewer links to external third-party content (Section 

5.2.3, p205) than corresponding non-coordinate-geotagging users of these 

platforms. 

• A disproportionate number of US2012 coordinate-geotagging users 

(Section 6.4.4.1, p265) are found in areas with a higher than expected 

percentage of ‘non-institutionalised’ population (halls of residence, nursing 

accommodation etc.); geodemographic profiling of SCOT2014 coordinate-

geotaggers (Section 6.4.4.2, p272) also suggests these users are found in 

areas with relatively youthful age profiles when compared to UK averages. 

• The median and average straight-line geo-retweet distances (Section 6.4.2, 

p251) across both electoral events are, respectively, 2.72km and 17.22km. 

These distances are significantly lower, in this politicised data, than the 

1,698km median and 955km average distances reported by van Liere, (2010) 

using a much smaller, non-politicised, random sample of Twitter data 

(n=13,399 retweets). Geo-retweet distances recorded here are also 

significantly lower than the ‘749 statute miles’ reported by Leetaru et al. 

(2013) analysing a much larger 10% sample of all Twitter tweets and 

retweets made between 23 October and 30 November 2012 

(n=1,535,929,521), a time period which overlapped with one of the data 

collection exercises undertaken in this study. The lower values reported 
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here may reflect a more ‘local pattern’ (van Liere, 2010) of opinion re-

dispersal in politicised social media discourse and is an area suggested for 

future research (Section 7.5, p299). Further details and maps showing 

dyadic geo-tweet/retweet dispersal are presented in Section 4.2.4.1 (p126);  

Chapter 5 (p186) presents the NLP/geoparsing results of this research which shows, 

through the application of a number of Big Data processing techniques, just how 

relevant space and place are to users of Facebook and Twitter interacting online 

during the 2012 US Presidential Election and 2014 Scottish Independence 

Referendum campaigns. These results are discussed, and additional findings 

detailed, in Chapter 6 (p227) of this thesis. From these observations it is possible to 

conclude (Chapter 7, p286) that tracking the spread of (mis)information using 

coordinate-geotagged interactions alone is likely to prove inaccurate. The 

comparative lack of coordinate-geotagged records, and the unrepresentative 

geographicality characteristics of coordinate-geotagging users, also makes any 

attempt at political prediction based around analysis of the sentiment of geotagging 

users’ messages, or the inclusion of given URL links shared alongside those 

messages, difficult to recommend. For governments, regulators, researchers and 

citizens this conclusion has profound implications. It is not possible to accurately 

track the geographical diffusion of political opinion or potentially nefarious geo-

targeted social media advertisements using coordinate-geotagged interactions 

alone. These implications are more fully discussed in Section 6.2 (p229) while policy 

recommendations, which could be adopted to ameliorate this problem, are 

outlined in Section 6.3 (p238). 

1.10 Impact and engagement 

Research Councils UK define impact as ‘the demonstrable contribution that 

excellent research makes to society and the economy’ (RCUK, 2016) further 

identifying: 
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• Academic impact is the demonstrable contribution that excellent social and 

economic research makes to scientific advances, across and within 

disciplines, including significant advances in understanding, method, theory 

and application. 

• Economic and societal impact is the demonstrable contribution that 

excellent social and economic research makes to society and the economy, 

of benefit to individuals, organisations and nations. 

This research project has demonstrated impact under both RCUK headings, more 

fully described below.  

1.10.1 Academic impact 

The susbstantive results of this research are reported in Chapter 5 (p186) with a 

discussion and additional findings presented in Chapter 6 (p227). Key contributions 

arising from this investigation into differing patterns of geographical expression 

amongst coordinate and non-coordinate-geotagging users of social media platforms 

during electoral campaigns have been outlined above, the implications of which, 

including policy recommendations, are more fully detailed later in Section 6.2 

(p229) and Section 6.3 (p238). It now appears certain that considerable scholarly 

and regulatory attention will focus on improving our understanding of geo-

behaviourally targeted online social media advertising (mis)use during electoral 

campaigns, following the series of damaging revelations and scandals which have 

recently come to light, described earlier in the introductory pages of this chapter 

(p1). The methods, results, recomendations and suggestions for further work 

detailed in this thesis should provide successive researchers with much useful 

information on which to base their future investigations. 

In addition, the project’s use of Datasift’s JSON data has already been of value to 

developers at the University of Sheffield (Bontcheva & Greenwood, personal 

communication, 2014) and the University of Cardiff (Morgan, personal 
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communication, 2015) who have used sample files to write parsers for the General 

Architecture for Text Engineering (GATE) and the Collaborative Online Social Media 

Observatory (COSMOS) software packages, respectively. The project’s use of a 

clustered MapR Hadoop ecosystem incorporating Apache Software Foundation’s 

Drill package has, likewise, already been of value to researchers at the University of 

Keele (Lam, personal communication, 2016) in verifying the successful installation 

of the University’s own MapR system. 

1.10.2 Economic and societal impact 

Ministers, parliamentarians, regulators, scholars and many other commentators 

have expressed deep concern over the breaking revelations highlighting the misuse 

of geo-behaviourally targeted political advertising, and/or misinformation, 

disseminated online via social media channels. In the UK, at least – with tightly 

enforced regulations regarding ‘above the line’ political campaign spending and 

message attribution on television, radio, newspaper and outdoor advertising, as 

well as in door-dropped pamphlets – unregulated campaign (or external) spending 

on social media advertising is now under intense scrutiny (The Electoral 

Commission, 2018a). Even in the US, with its generally more relaxed regulations 

surrounding campaign spending limits or political messaging, Senator Mark Warner, 

Vice Chair of the Senate Intelligence Committee, has warned that ‘the era of the 

Wild West in social media is coming to an end’ (Charter, 2018). 

Writing in the Financial Times, Gapper (2018) has suggested that ‘Mark Zuckerberg 

cannot control his own creation’, going on to point out that despite tightening data 

controls, especially surrounding access to the ‘social graph’ of user inter-

relationships (Hogan, 2018), ‘things cannot be fixed because they are beyond Mr 

Zuckerberg’s control, lost in myriad encounters among Facebook’s 2bn users. The 

technical term is emergence, the powerful and unpredictable outcome of millions 

of users interacting freely with others. Anything from joke videos to fake news can 

spread like a virus, changing how people feel and act.’ Tracking the geographical 
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and social spread of these virus-like outbreaks is not straightforward. This thesis 

contributes to academic and societal understanding of these issues by 

demonstrating the difficulty involved in accurately geographically tracking the 

downstream diffusion of such material and providing suggestions for the future. It 

is currently much easier for political advertisers, whether bona fide or not, to set up 

and run a geo-targeted campaign using Facebook (Figure 1-1, p5), or several other 

major websites (Section 1.6, p30), than it is for government, regulators, researchers 

or citizens to track the geographical consumption and sharing patterns of such 

advertising. This situation arises largely from platform operators’ privacy policies, 

some perfectly well-intentioned to safeguard user privacy, but also from a lack of 

‘transparency’ in available (meta)data and reporting (The Electoral Commission, 

2018a). 

Early indications (e.g., BBC News, 2018d) suggest that the political will to regulate 

some of the world’s largest ‘tech giants’ exists, but regulating global corporations 

will not be easy. The policy recommendations incorporated in this thesis (Section 

6.3, p238) offer one possible solution to the problem, by encoding lower-resolution 

coordinates alongside all social media interactions. However, this technical 

response is only one strand of a much larger debate in which societies around the 

world must engage with what The Atlantic’s correspondent and author, Franklin 

Foer (2017), in an interview with The Guardian (Taylor, 2018), has suggested is ‘the 

real problem […that we] have two or three companies that are the masters of the 

global public sphere.’ Tackling the ‘real problem’ may take some time but, 

hopefully, the results and suggestions contained within this thesis will assist. 

Meanwhile, on a more prosaic and technical level, the project’s use of Datasift’s 

JSON data, and particularly the ‘ingestion’ of 2014 Scottish Independence 

Referendum data with its larger number of longer (and/or multi-byte encoded) 

JSON key names, has already been of value to Oracle Corporation (Pitts & Venzl, 
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personal communication, 2015), whose developers are improving JSON document 

data storage in forthcoming versions of Oracle’s RDBMS software. 

1.10.3 Engagement 

During the research, findings have been presented at: 

• RGS-IBG Annual International Conference 2013; Big, Open Data and the 

Practice of GIScience (Tear, 2013) 

• The 14th International Conference on Computational Science and Its 

Applications (ICCSA 2014) (Tear, 2014) 

• The 19th AGILE International Conference on Geographic Information 

Science; Workshop "GIS with NoSQL" (Tear, 2016) 

• The 25th GIS Research UK Conference presenting Wading through the 

swamp: filter systems for geospatial data science (Tear & Healey, 2017) 

The paper presented at ICCSA 2014 was later published in Springer’s Lecture Notes 

in Computer Science series. 

1.11 Limitations of the research 

Eisenhardt (1989, p532) states that a case study ‘approach is especially appropriate 

in new topic areas’, particularly as the ‘the process […] is highly iterative and tightly 

linked to data.’ The technological infrastructure required to satisfy the aim and 

objectives of this study (Chapter 4, p118) comprises an important part of the 

research method, in turn framed within an exploratory and largely quantitative 

empirical research methodology (Chapter 3, p94) that is intimately bound with the 

politicised social media data under investigation, much of it discursive and hence 

inherently qualitative in nature. 

The two case study data sets are large (>46GB raw), rich in some attributes (e.g., 

message text, date/time stamps) but poorly populated in others (e.g., exact 
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geographical locations, demographics). A wide range of computerised software 

systems have been used to collect, store, query and mine these data, producing the 

largely aggregated results presented in Chapter 5 (p186) and Chapter 6 (p227). This 

type of approach, sometimes termed ‘Computational Social Science’ (Lazer, Brewer, 

Christakis, Fowler, & King, 2009), has been criticised from a methodological 

standpoint by some scholars (Fuchs, 2017a; Tufekci, 2014). Arguments over the 

validity and extensibility of Big Data research, sometimes compounded by a lack of 

accompanying theory, in many ways reflect academic geography’s earlier struggles 

with its own ‘quantitative revolution’ (I. Burton, 1963; Cresswell, 2014). 

Wyly (2014, p35) has written an excellent and extremely thought-provoking article 

on this topic, eloquently explaining how ‘the torrential acceleration of data flows 

[and] the circulation and partially autonomous replication of mobile data streams 

[…] seem to be reconstituting some of the most important [methodological] 

debates of geography from the 20th century.’ The new quantitative revolution 

which Wyly (p35) describes has ‘only recently come into pragmatist existence with 

the new abilities to observe and quantify online human attention in real time.’ As 

this study examines data of this type – and ethical good practice and University 

recommendations (Section 3.4, p111; Appendix 4, p419) largely preclude the 

reporting of most, except the most politically prominent, of individual’s social 

media message text or metadata – these factors are all limitations in this work. 

Consequently, an ‘awareness’ of the ‘representativeness, validity and other 

methodological pitfalls’ in social media Big Data research, which Tufekci (2014, 

p524) identifies, is acknowledged here.  In deference to Tufekci’s suggestion that a 

discussion of these issues should go ‘beyond soliciting “limitations” sections’ in 

research work the reader is invited to turn to Chapter 3 (p94) of this thesis, where 

epistemological, methodological and ethical limitations are discussed in much 

greater detail. 
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1.12 Thesis structure 

This thesis is comprised of seven chapters: 

1. Introduction – The current chapter has introduced the study, set out the 

hypothesis, aim and objectives of the research, the research context, 

contribution to knowledge and impact. The background to the research has 

been described together with an outline of the research process. Limitations 

of the study have also been outlined and a chapter plan given. 

2. Literature and Context – Chapter 2 (p51) contextualises the study providing 

a theoretical framework for the research based on cross-disciplinary 

readings in Politics, Communications, Geography and Computer Science. The 

use of OSN data in other application domains is discussed, and the gaps in 

existing knowledge are identified. 

3. Research Design – Chapter 3 (p94) outlines the exploratory case study 

methodology employed to harvest significant volumes of OSN interactions 

generated during two major political events. Epistemological and ethical 

considerations are discussed. Methodological difficulties inherent in ‘Big 

Data’ social media analysis are introduced.  

4. Research Methods – Chapter 4 (p118) describes file data outputs and the 

Extract, Transform and Load (ETL) procedures developed to effectively store 

data in a number of conventional (SQL) and unstructured (NoSQL) database 

systems, together with the range of software packages and computer 

systems used to augment, mine and visualise these data. 

5. NLP/Geoparsing Results – Chapter 5 (p186) presents results addressing 

three research questions using the data collected and the research methods 

outlined in the preceding chapter. A wide range of statistics, maps and 

tables are presented illustrating the role of geography in OSN interactions 

based on metadata, NLP, geoparsing and data-mining operations. 
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6. Discussion and Additional Findings – Chapter 6 (p227) discusses results 

presented in the preceding chapter and details several additional findings 

made possible by the flexible set of research methods and exploratory 

research methodology described in earlier chapters. UK and US Census data 

are ‘fused’ to OSN interactions and other analyses reported. 

7. Conclusion – Chapter 7 (p286) concludes the thesis by drawing together all 

of the themes introduced in earlier chapters, confirming the validity of the 

approach and laying claim to an original contribution to knowledge. Ideas 

for further research are identified, and complementary areas of cross-

disciplinary research are outlined.  

Data licences, ethics correspondence and code listings are largely confined to 

Appendices (pp407-491). As the research is highly technical in nature, complete 

programmes, virtual machines (VMs), and archival database backups are too 

voluminous (>2TB) for inclusion. These digital artefacts may be obtained from the 

author upon request.  
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2 LITERATURE AND CONTEXT 

2.1 Introduction 

The review presented in this chapter is based upon an extensive search for 

literature relating to the usage of Online Social Networks, particularly in political 

contexts. The review process is complemented by several computerised 

bibliometric, analytical and text-mining methods designed to synthesise results 

from published scholarly works and related, largely news-based, material. Over 

1,250 articles, and 1.22GB of associated Adobe Portable Document Format (PDF) 

files, have been saved to Mendeley's (2016) desktop bibliographic reference 

management software as a result of this literature search. The academic advisory 

body JISC (2012, p3) has noted that ‘Vast amounts of new information and data are 

generated everyday through economic, academic and social activities’, suggesting 

that techniques ‘such as text and data mining and analytics are required to exploit 

this potential.’ JISC go on to state that: 

In systematic reviews of literature, text mining is used to automatically 

identify literature that should be reviewed by researchers wishing to 

establish the current state of knowledge in a particular field. The mining 

takes place across both traditional peer-reviewed academic journals and 

grey literature such as technical reports, policy documents and pre-

prints. Researchers can use the information extracted to identify 

relevant documents from a much wider source pool, including from 

other disciplines and non-traditional sources. 

(JISC, 2012, p15) 

Text and data mining techniques are applied here to analyse the curated research 

literature corpus. Section 2.2, below, details the background to this new type of 

literature review process while Section 2.2.1 (p54) details the methods used to 
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interrogate the substantial body of literature collated during this research. The 

results of text and data-mining operations against the literature corpus are 

presented in Section 2.2.2 (p57); outputs from which have been used to 

systematically identify and rank key terms from text stored in article PDFs, helping 

to frame a thematic overview of the wide-ranging and cross-disciplinary research 

literature. Section 2.3 (p61) provides a contextual synopsis of these results before 

key themes in the political (Section 2.4, p64), communications (Section 2.5, p72), 

geographical (Section 2.6, p77) and technical (Section 2.7, p83) literatures are 

elucidated. Finally, Section 2.8 (p88) identifies gaps in knowledge and several 

influential papers, fundamental to the design and conduct of this research project. 

2.2 Text and data-mining in the literature review process 

As Webster & Watson (2002, pXIII) make clear ‘A review of prior, relevant literature 

is an essential feature of any academic project. An effective review creates a firm 

foundation for advancing knowledge. It facilitates theory development, closes areas 

where a plethora of research exists, and uncovers areas where research is needed.’ 

In an era in which ever-increasing numbers of journals and journal articles examine 

emergent phenomena, such as Online Social Networks, new techniques are 

required to search for, select and synthesise academic material (JISC, 2012). Ware & 

Mabe (2015, p6) have estimated that around 2.5 million peer-reviewed scientific, 

technical and medical articles were published in the English language in 2014. As 

the rate of production of scholarly output increases and the ease with which 

electronic documents can be stored and searched improves, nascent text-mining 

and knowledge discovery technologies – used elsewhere in this research to 

interrogate social media data (Chapter 5, p186) – now offer high degrees of utility 

when analysing large corpora of published academic work. 

Fully ‘systematic’ literature reviews, particularly popular in the medical research 

community and increasingly being applied by ‘early adopters’ in the social sciences 

and humanities (JISC, 2012, p4), rely upon searches for literature, based on key 
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terms, executed against multiple online academic repositories or databases, e.g., 

JSTOR, Web of Science, PubMed etc. The approach adopted here, more fully 

detailed in Section 2.2.1 below, may best be described as ‘semi-systematic’; over 

1,250 articles have been selected for inclusion in the research literature corpus over 

a period of more than 7 years, based upon searches executed on popular online 

repositories and publishers’ websites as well as alerts set up on, and emails 

received from, Google Scholar and learned societies such as the Political Studies 

Association. Articles selected for inclusion in the research literature corpus are 

stored in Mendeley Desktop bibliographic management software and have been 

read either in full or sectionally, by searching for key terms and the paragraphs or 

sections that contain them. The literature review which follows (Sections 2.4 to 2.7, 

pp64-88) therefore mixes a conventional scholarly approach to the task, with a 

synopsis of key themes given in Section 2.3 (p61), alongside several computerised 

methods outlined in the following paragraph and more fully described in Sections 

2.2.1 and 2.2.2, below. 

Usai, Pironti, Mital, & Aouina Mejri (2018) have suggested that a systematic review 

of literature may be conducted ‘by applying “text mining at the term level, in which 

knowledge discovery takes place on a more focused collection of words and 

phrases that are extracted from and label each document” (Feldman et al., 1998, 

p1). This approach involves extracting labels which correspond to keywords, which 

consequently represent the main topic of an article.’ Term labelling may be 

achieved manually (e.g., by the researcher marking up article text identifying key 

terms based upon their own domain expertise) for training in machine learning 

applications or automatically, as here, through the use of algorithmic processing, 

e.g., the creation of Term Frequency – Inverse Document Frequency (TF-IDF) 

matrices (Section 2.2.2.2, p58). Either approach is designed to ‘find nuggets in 

mountains of textual data’ (Dörre, Gerstl, & Seiffert, 1999), helping to identify key 

themes running through substantial bodies of literature and to organise the review 

process accordingly. 



Geotagging matters? 

54 

 

The following sections of this chapter describe the methods used to search for 

literature (Section 2.2.1) and present results of data and text-mining analysis 

(Section 2.2.2, p57). Through this work 136 key terms, each mentioned over 4,000 

times within the research literature corpus, have been identified programmatically. 

Using acquired domain knowledge (Alexander, 1992), based upon a reading of 

these articles, identified terms have been assigned (Section 2.2.2.3, p59) to four 

disciplinary categories; political, communications, geographical and technical. The 

literature relating to Online Social Network usage, as it applies to each category, is 

discussed below, starting in Section 2.4 (p64). First, the methods used to search for 

and store literature are set out. 

2.2.1 Methods 

This section details the methods used in the literature review, considering the 

scope of the review, sources of literature and the potential for bias in study 

selection (Section 2.2.1.1). Section 2.2.1.2 (p56) outlines the specific methods used 

to interrogate the research literature corpus held in (Mendeley, 2016) bibliographic 

management software, further details of which are given in Appendix 3 (p414).  

2.2.1.1 Scope of the review, sources of literature and potential for bias 

Recognising that a literature review is inherently a ‘retrospective, observational’ 

task (A. F. Smith & Carlisle, 2015), and that the search process is ‘no more free from 

the impact of human subjectivity than other research’ (Okoli & Schabram, 2010, p2) 

the approach adopted here is semi-systematic; aiming to be as ‘explicit’, 

‘comprehensive’ and ‘reproducible’ as possible, in line with Fink's (2005) 

recommendations. The literature search uses a range of Web-hosted databases and 

email-based alert tools, as advocated by Dunleavy (2003), Trafford & Leshem (2008) 

and M. Wallace & Wray (2011). Various systems have been used, including those 

developed by the University of Portsmouth Library, the Joint Information Systems 

Committee (JISC) and the British Library. Searches have also been conducted on the 

Web of Science, Google Scholar and on websites developed by academic publishers 
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including Sage Publishing, Taylor & Francis and John Wiley & Sons, amongst others. 

Regular email alerts from Google Scholar, each covering specific topic areas and 

typically returning around ten potentially relevant articles per email, have also been 

used. 

In this study: 

• Searches are conducted in the English language, although non-English texts 

have not been specifically excluded; 

• Preference for inclusion is shown towards published works, particularly 

works published in journals in recent years; 

• Search terms used in alert services have evolved iteratively with the longest 

running searches on Google Scholar (>1,200 emails since 2011) indexing: 

o [ politics \"social network\" ] 

o [ intitle:\"geo tagging\" ] 

• Cross-referencing and article recommender systems have also been used to 

expand the ‘pool’ of available literature (Teppan & Zanker, 2015). 

In ‘screening for inclusion and exclusion’ (Okoli & Schabram, 2010) consideration 

has been given to: 

• The quality of academic writing including the use of English (grammar, 

spelling, punctuation) and the accuracy and extent of referencing; 

• The quantitative measurement of ‘relevance’ as exhibited by citation and/or 

other bibliometric scores (e.g., journal ‘impact factor’). 

Altogether, over 1,250 bibliographic references have been saved to Mendeley 

during the course of this research. The following section briefly describes how 

features in Mendeley Desktop, allied to third-party technologies, usefully enable 

bibliometric analysis of the research literature corpus. 
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2.2.1.2 Bibliometric analysis 

Using the Help -> Create Backup… menu in Mendeley Desktop it is possible to 

create a backup of stored references. These are saved to an SQLite (2016) database 

file that may be opened, viewed and queried using open-source software (DB 

Browser for SQLite, 2016). Figure 2-1, based on analysis from this workflow, 

illustrates the number of references by publication type (journal article, book etc.) 

selected for inclusion in the literature search and stored in Mendeley Desktop. 

 

Figure 2-1 – Number of references by publication type selected for inclusion 

Mallig (2010) has highlighted the benefits of using ‘relational databases […] in the 

field of bibliometrics.’ RDBMSs such as SQLite, the underlying storage technology 

used by Mendeley Desktop, not only store data (e.g., year of publication etc.) in 

tables but enable queries to be executed against this stored data. Figure 2-1, which 

shows that journal articles comprise the majority (68.7%) of saved references in the 

research literature corpus and Figure 2-2 (p57), which shows the number of 

references by publication type by year, could not have been created within 

Mendeley Desktop itself, but can be graphed using Mendeley’s SQLite backup file 

and a SQL query run in DB Browser for SQLite (Appendix 11 listing 3, p479). Further 

details of this, and alternate, techniques for querying bibliographic data are given in 

Appendix 3 (p414) of this thesis. Pertinent results from this bibliometric analysis 
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exercise are detailed in the following section, alongside a report of the results of 

text-mining operations conducted in R (The R Foundation, 2018). 

2.2.2 Results 

2.2.2.1 Literature recency by publication type 

A data-based approach provides useful information about the shape (Figure 2-1, 

p56 and Figure 2-2, below) and composition (Table 1-1, p38) of the research 

literature corpus. It is possible to draw two key conclusions from this analysis: 

1. The literature search exhibits a strong degree of recency, and; 

2. The literature search exhibits a strong degree of cross-disciplinarity. 

Outwith academic ‘Geography’ many of the references collected as part of this 

search have been published in ‘Political’, ‘Communications’ or ‘Computer Science’ 

journals, some of which, e.g., Mobile Media & Communication (Volume 1, 2013), 

have only recently been established. 

 

Figure 2-2 – Number of references by year by type selected for inclusion 

These conclusions support the view a) that growth in OSNs and other forms of 

mobile communication are leading to new forms of scholarship (R. M. Chang, 
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Kauffman, & Kwon, 2014; Cresswell, 2014), and; b) that plenty of geographically 

relevant content can be found in journals outside the traditional publication bounds 

of the discipline of geography itself (Miller & Goodchild, 2015). 

2.2.2.2 Literature mining for key terms 

Around 90% of the ~1,250 references stored in Mendeley Desktop include a PDF file 

containing source literature content. Using computer programmes (Appendix 3, 

p414) developed in R (The R Foundation, 2018) the content of 1,111 PDF files has 

been text-mined using a Term Frequency – Inverse Document Frequency (TF-IDF) 

algorithm. 

TF-IDF scores account for ‘the frequency of terms appearing in a document, the 

length of the document in which any particular term appears, and the overall 

uniqueness of the terms across documents in the entire corpus’ (Russell, 2011, 

p151). A large number of terms (185,577) from 1,111 PDFs containing 159.6MB 

written text (28.5 times more than the seminal, 5.6MB, Complete Works of William 

Shakespeare digitised by Project Gutenberg) have been identified using R’s Text 

Mining (TM) package (Feinerer, Hornik, & Artifex Software Inc, 2016).  

In pseudo-code the steps involve: 

• Mounting Mendeley’s PDF document repository as a ‘shared folder’ on a 

Linux Virtual Machine (VM) set up with the R and RStudio packages, and;  

• Running scripts written in R to create a corpus from the PDF files, converting 

all text to lower case, removing punctuation, numbers and English-language 

stop words (‘and’, ‘the’ etc.) before performing statistical analysis. 

Results may be tabulated or, as in Figure 2-3 (p59), visualised using a Word Cloud. 

Top ranked terms include, as expected, the words ‘political’, ‘tweets’, ‘twitter’, 

‘social’ and ‘media’. Less prominent terms include ‘spatial’, ‘geography’, ‘analytics’ 

and more. 
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Figure 2-3 – Key terms (TF-IDF frequency >4,000) identified in the literature corpus 

The successful identification of key literature concepts through TF-IDF analysis of 

the stored research repository supports JISC's (2012, p3) assertion that ‘text mining 

and analytics of […] scholarly literature and other digitised text affords a real 

opportunity to support innovation and the development of new knowledge.’ 

2.2.2.3 Literature categorisation for thematic analysis 

Using acquired ‘domain knowledge’ (Alexander, 1992) the top 136 categorisable 

terms (frequency > 4,000, Figure 2-3) identified by TF-IDF analysis of the research 

literature corpus have been ‘hand-coded’ (Swanson & Holton, 2005) into four 

thematic classes: 65 terms are coded technical, 33 political, 24 communications and 

14 geographical. While some overlap between terms (e.g., ‘respondents’) in classes 

is inevitable, and twelve other terms (e.g., ‘business’) could not easily be 

categorised, thematic analysis helps to identify prominent concepts in four inter-

related bodies of material derived from the literature search. 
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Figure 2-4 – Percentage publication titles by class 

Figure 2-4 shows the percentage of 556 distinct publication titles (e.g., New Media 

& Society, The Guardian) allocated to each of the same four classes. As with key 

terms, technical publications comprise the majority (> 53%) of all references held. 

Geographical, communications and political classes together comprise ~42% of all 

references. A fifth class, news, of which there has been a great deal in the subject 

area during the research programme, accounts for just under 5% of all references 

selected for inclusion by the literature search.  

2.2.2.4 Value and benefit of text-mining 

The quantitative and thematic analyses detailed above, together with a great deal 

of reading, have helped to distill several key contextual leitmotifs from a large 

research literature corpus examining OSN usage across four cross-disciplinary 

boundaries, further illustrating the ‘value and benefit of text-mining’, identified by 

JISC (2012), in conducting literature reviews (Section 2.2, p52). A contextual 

synopsis and overview of the curated research literature corpus follows in Section 

2.3, after which key terms, concepts and select papers from each of the four main 

thematic classes shown in Figure 2-4 are discussed consecutively in Sections 2.4 to 

2.7 (pp64-88). Technical terms, and the technical literature, are covered lastly in 

this synthesis as politics, communications and geography do most to conceptually 

frame the current research project. 
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2.3 Contextual synopsis 

There is widespread public and academic concern that increased political marketing 

or more overt interference in electoral processes using geographically and 

behaviourally targeted messaging on social networks may be altering the nature of 

democracy. The fast pace of communications and immediacy which the Internet, 

Web and social media allow appears to have weakened, rather than strengthened, 

the Public Sphere. Decreasing participation rates in political activity visible in falling 

levels of activism, voting attendance and party membership are also causes for 

anxiety. Declining readership of newspapers – particularly amongst the young, who 

increasingly ‘get’ their news from homophilous friend-network or recommender 

systems on social media – appears to have significantly changed the nature of many 

people’s exposure to, or consumption of, reliable information. This is especially 

dangerous as the spread of ‘fake news’ on Internet and social media channels is 

both more rapid, and more extensive, than the spread of ‘real news’. 

More widely there is a perception in the literature, especially in the wake of the 

Facebook and Cambridge Analytica scandal, that the rise of the networked society 

elevates Big Data into the realms of an Orwellian Big Brother, constantly storing 

information about individuals’ daily actions and using these data for manipulation 

or control. Earlier revelations from ex-US spy Edward Snowden, published in The 

Guardian (2018), revealing that government surveillance agencies make extensive 

use of social media feeds, as well as any other Internet and telecommunications 

data they can access, had already done little to inspire public confidence in online 

digital privacy and, apparently, ‘a week after President Donald Trump’s 

inauguration’ on 20 January, 2017, following several post-electoral months in which 

Big Data driven campaigning techniques had come to light, ‘George Orwell’s “1984” 

[was] the best-selling book on Amazon.com’ (Broich, 2017). 

Academic articles in the geographical and technical literature are not immune from 

these concerns, particularly where one or other crosses into the political or 
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communications space. However, the application of geographical approaches in 

social media Big Data analysis have been relatively limited and appear especially 

limited in politicised settings. With the exception of just one paper covering 

electoral events (H. Wang, Can, Kazemzadeh, Bar, & Narayanan, 2012), nowhere 

else in their Advanced Systematic Literature Review on Spatiotemporal Analyses of 

Twitter Data do Steiger, de Albuquerque, et al. (2015) find any examples of 

GIScience-based research into geo-referenced OSN interactions situated in a 

political context. 

Steiger, de Albuquerque, et al.'s (2015) review, graphically summarised in Figure 

2-5 demonstrates that over 75% of papers came from schools of Computer Science 

or Information Science, according to a classification of their authors’ academic 

research disciplines.  

 

Figure 2-5 – Classification of papers according to authors’ academic research disciplines 
(after Figure 3, Steiger, de Albuquerque, et al., 2015, p815) 

Just 7% of reviewed papers emanated from ‘Earth and Geoscience’ departments 

and most of these (46%, Figure 2-6, p63) have focused on what the authors term 

‘Event Detection’, e.g., disaster (27%), traffic (14%) or disease management (5%) 
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where ‘study outcomes have demonstrated a high spatiotemporal reliability and 

usefulness of tweets’, particularly in earthquake detection.  

 

Figure 2-6 – Specific application domain of reviewed papers (after Figure 5, Steiger, de 
Albuquerque, et al., 2015, p817) 

Social Network investigations, examining ‘individual user characteristics and their 

social relationships within a network’ comprise 14% of papers selected in Steiger, 

de Albuquerque, et al.'s (2015) review and Location Inference, focused ‘on 

retrieving direct or indirect geolocation information from Twitter’ comprise 13% of 

papers; the remaining 27% of reviewed papers could not be classified. 

Online Social Networks, and Facebook in particular, clearly provide political 

marketers, or even state-sponsored agents such as the Russian ‘trolls’ (BBC News, 

2017b) thought to have interfered in the 2016 US Presidential Election, with an 

unprecedented level of control over user geo-targeting and messaging. Tucker et al. 

(2018, p3) identify ‘widespread concern in many segments of society—including the 

media, scholars, the philanthropic community, civil society, and even politicians 

themselves—that social media may […] be undermining democracy.’ While 

concerning, Agnew (2014) has suggested that geography may act as a ‘mediating’ 
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force in politics as the boundaries of voting districts change infrequently while the 

socio-economic and political behaviour of many bounded electorates exhibit quite 

considerable degrees of stability over time; this is evidenced through the 

‘geographical rootedness of political life’ and the ‘persistence of of place-specific 

and regional voting patterns’, some of which may also be observed in Online Social 

Networks.  

As the fast-paced communications changes brought about by social media influence 

political life, geographical interpretations have increased significance. However, as 

the review above has shown, few published articles have considered this new 

media landscape from a distinctly geographical perspective. Recent events suggest 

that this is bound to change. The 2018 Facebook and Cambridge Analytica scandal 

(Cadwalladr & Graham-Harrison, 2018), and presumed Russian state-sponsored 

interference in the 2016 US Presidential Election campaign (U.S. House of 

Representatives, 2018a), demonstrate how the use of geo-behavioural targeting 

may be applied in attempts to perturb normal democratic processes. 

There is a requirement to develop a greater understanding of the role of geography 

in politicised OSN discourse, and to determine whether coordinate-geotags or other 

forms of expressed geographicality may allow physical tracking of real or nefarious 

content promulgated in the virtual world. The research presented in this thesis 

addresses these essential questions, building upon literature in the political, 

communications, geographical and technical fields discussed, consecutively, below. 

2.4 Political literature 

2.4.1 Key publications 

Political journals, articles and book excerpts provide around 14% of literature 

references with key publications including Political Communication, Electoral 

Studies, The Annals of the American Academy of Political and Social Science, 
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American Political Science Review and Politics. Adding more overtly sociological 

works to the mix incorporates leading journals including American Behavioral 

Scientist, Social Science Quarterly, Sociology, American Sociological Review and 

Theory & Psychology. 

2.4.2 Key terms 

The number of relevant politically-coded terms (Figure 2-7) in the research 

literature corpus is high, at 33, and the politically (and sociologically) themed 

literature provides an important theoretical backdrop to the technical work 

undertaken as part of this research.  

 

Figure 2-7 – Key political terms in the literature corpus identified by TF-IDF analysis 

Key themes include matters of political participation, campaigning, engagement 

and trust. Political leaders including US Presidents Obama and, more latterly, Trump 
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both appear frequently in the literature, as do several other key terms relating to 

the mechanics of politics; voters and voting, parties, turnout and opinion. All of the 

identified terms and concepts are crucial in understanding the political impacts of 

newly-emergent communication systems, including online social media networks, 

discussed later in Section 2.5, (p72). As the introductory pages of this thesis (p1) 

have demonstrated, numerous politicians, regulators, scholars and commentators 

have suggested that there is a ‘relentless threat to our democracy’ (Charter, 2018) 

from online social networks. The perceived threat centres around the destabilising 

effect widespread and near-constant engagement with social media may have on 

individuals’ political decision-making processes, which may have been purposefully 

manipulated by micro-targeted campaigns playing on deep-seated fears or 

emotions, or more simply distorted by the spread of ‘fake news’. 

Political deliberation, and the related concepts of deliberative democracy and 

participation, feature regularly in the politically themed references of the research 

literature corpus (Dahlgren, 2005; de Zúñiga, Copeland, & Bimber, 2014; Raphael & 

Karpowitz, 2013). Chambers (2003, p309) has defined deliberation as ‘debate and 

discussion aimed at producing reasonable, well-informed opinions in which 

participants are willing to revise preferences in light of discussion, new information, 

and claims made by fellow participants.’ A deliberative democracy in which citizens 

are well-informed and fully engaged with debate in order to make ‘rational-critical’ 

decisions represents something of an ideal in political theory (Polat, 2005), but now 

appears to be at risk in an age of ‘weaponised’ (Nissen, 2015) social media political 

propagandisation (Ward, 2018). 

The notion of ‘rational-critical’ decision-making stems from the ‘Habermasian’ 

theory and concept of the ‘Public Sphere’. First published in German in 1962, 

Habermas' (2011) work The Structural Transformation of the Public Sphere: An 

Inquiry into a Category of Bourgeois Society has proved an enduring and influential 

work (Borah, 2017). According to Habermas, the Public Sphere is ‘a category that is 
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typical of an epoch’ (Habermas, 2011, pXVII) which transforms over time. The Public 

Sphere is a product not only of systems of governance, law and economics but also 

of systems of communication. The Internet, and the growing reach of websites and 

applications enabled by the development of the World Wide Web, is the most 

recent communications development to have affected contemporary political 

discourse (L. M. Weber, Loumakis, & Bergman, 2003).  

During a ‘relatively brief period of euphoria’, which Tucker et al. (2018) suggest is 

now well past, some scholars had suggested that technology and the Internet could 

‘save’ democracy; allowing citizens to rebuild trust in their elected representatives 

through improved communications (Westen, 1998), or replacing ‘outdated and 

inadequate voting technology’ with Internet-based systems (Mercurio, 2004). These 

hopes arose from observations that democracy was ‘in trouble’, as evidenced by 

‘comparative turnout decline’ (Gray & Caul, 2000, p1092), ‘declining party 

membership’ (B. Lee, 2014) and ‘significant’ declines in newspaper readership (N. 

Newman et al., 2016). These deteriorations in ‘a strong and active civic society’ 

(Putnam, 1995, p65) are contra-indicators, in Habermasian theory, of a healthy 

Public Sphere. Online communications, it was suggested, including enhanced 

‘political relationship marketing’, could be used to arrest the ‘rapid decline in direct 

participation in politics’ which had been observed (Henneberg & O’Shaughnessy, 

2009). Relationship marketing over social media channels has now been roundly 

criticised, leading some (e.g., Persily, 2017) to question whether ‘democracy can 

survive the Internet?’ 

A defining concern of the political literature is its attempt to reconcile new forms of 

online engagement with the more traditionally ‘direct’ (and offline) political 

participation of earlier ages (Vissers & Stolle, 2014). Key contributors to the debate, 

including Peter Dahlgren and Zizi Papacharissi, have framed their contributions 

within Habermasian constructs (Dahlgren, 2005; Dahlgren & Sparks, 1991; 

Papacharissi, 2002, 2004, 2010). While the writings of ‘Jürgen Habermas [are] 
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difficult to read and often [leave] students perplexed’ (Thomassen, 2010, p1) the 

German philosopher’s thinking has provided a useful model for analysing political 

discourse across several different epochs. Dahlgren (2005, p148) offers the 

following conceptual overview: ‘In schematic terms, a functioning public sphere is 

understood as a constellation of communicative spaces in society that permit the 

circulation of information, ideas, debates – ideally in an unfettered manner – and 

also the formation of political will (i.e., public opinion).’ Where these ideas or 

debates have been significantly manipulated, as recent events have suggested 

(Cadwalladr, 2017; U.S. House of Representatives, 2018a), the Public Sphere and 

‘rational-critical’ decision-making are endangered. 

In an influential article published in New Media & Society, Papacharissi (2002, p9) 

cautiously suggested that ‘The internet and its surrounding technologies hold the 

promise of reviving the public sphere.’ More recently, Papacharissi (2010, pVI) has 

questioned whether the Public Sphere may have ‘expired’; to be supplemented (or 

supplanted) by a ‘Private Sphere’ characterised by a ‘networked self and […] remote 

connectivity’, the ‘new narcissism [of] blogging’, the ‘rebirth of satire and 

subversion’, ‘social media news aggregation’ and the ‘agonistic pluralism of online 

activism.’ These changing political interpretations of the Web, online ‘politicking’ 

(Panagopoulos et al., 2009) and social media (Harris & Harrigan, 2015) are reflected 

in over 45 articles in the research literature corpus including the word 

‘participation’ in their titles. Many allude to the possibility that increased online 

exposure to politics and political conversations may boost interest both in discourse 

(Hoffman, Jones, & Young, 2013; Yunhwan Kim, Russo, & Amnå, 2017; Ostman, 

2012) and in ‘measurables’ such as turnout and voting numbers (Borthakur et al., 

2011; Moeller, de Vreese, Esser, & Kunz, 2014; Vassil & Weber, 2011) but no 

decisive conclusions have been reached. 

While earlier works (Mercurio, 2004; Westen, 1998) tended to view the possibilities 

offered by Internet-based Information and Communication Technologies (ICTs) 
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optimistically, more latterly – and particularly in the wake of the Facebook and 

Cambridge Analytica data harvesting ‘scandal’ (BBC News, 2018e) – a much more 

sceptical tone has set in (Persily, 2017; Tucker et al., 2018; Tucker, Theocharis, 

Roberts, & Barberá, 2017). Persily (2017, p64) has suggested that the ‘void’ left by 

declining mainstream media and political-party organisations ‘was filled by an 

unmediated populist nationalism tailor-made for the Internet age.’ This was 

particularly evident, Persily suggests, during the 2016 US Presidential Election, but 

has also been evidenced by the ‘rise of the Five Star Movement in Italy, the Pirate 

Party in Iceland, the “keyboard army”of President Rodrigo Duterte in the 

Philippines, and the use of social media by India’s Prime Minister Narendra Modi, 

who has 39 million followers on Facebook and 27 million on Twitter.’ Political use or 

misuse of the Internet, where (mis)information spreads quickly through social 

media networks (Vosoughi et al., 2018), is having a profound effect on democracies 

world-wide. 

Sean Parker, an ex-Founding President of Facebook, has said (BBC News, 2017a) 

that the ‘little dopamine hits’ his social network rewards through site activity, and 

the strong growth of the platform, has had ‘unintended consequences’ in changing 

people’s relationships with society and with each other, and may be having yet 

more profound effects on childrens’ development. In the political sphere, Tucker et 

al. (2017, p46) neatly summarise this duality, asking ‘How can one technology – 

social media – simultaneously give rise to hopes for liberation in authoritarian 

regimes, be used for repression by these same regimes, and be harnessed by 

antisystem actors in democracy?’ The authors suggest that these contradictions can 

be explained by understanding ‘1) that social media give voice to those previously 

excluded from political discussion by traditional media, and 2) that although social 

media democratize access to information, the platforms themselves are neither 

inherently democratic nor nondemocratic, but represent a tool political actors can 

use for a variety of goals, including, paradoxically, illiberal goals.’ 
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While contradictions and debate surrounding the effect of social media on politics 

continue, other incongruities regarding voting participation in the online age have 

emerged. The 2012 US Presidential Election was, according to the Pew Research 

Center (DeSilver, 2015), characterised by a turnout of ‘53.6%, based on 129.1 

million votes cast and an estimated voting-age population of just under 241 million 

people.’ In the US, this turnout figure (DeSilver, 2015) has ‘been fairly consistent 

over the past several decades, despite some election-to-election variation. Since 

1980, voting-age turnout has varied within a 9-percentage-point range – from 48% 

in 1996, when Bill Clinton was re-elected, to 57% in 2008, when Barack Obama won 

the White House.’ Conversely, during the 2014 Scottish Independence Referendum, 

a turnout of 84.6% of the registered electorate was recorded which ‘was the 

highest recorded at any Scotland-wide poll since the advent of universal suffrage’ 

(The Electoral Commission, 2014, p1). 

Voter participation, as measured by turnout, has shown both stability and growth in 

a period when interest in politics is thought to have increased as a result of 

participation in new forms of online communication, including social media (Lilleker 

et al., 2015). Two additional UK and US results do little to clarify the picture; the 

2016 UK European Union Membership Referendum recorded a turnout of 72.2% 

(The Electoral Commission, 2016) while CNN reported ‘Voter turnout at 20-year low 

in 2016’ in the surprise victory for Donald Trump in the 2016 US Presidential 

Election (G. Wallace & Yoon, 2016). Habermas (2016) has stated, commenting on 

the unexpected 2016 ‘Brexit’ referendum result in Great Britain, that ‘It never 

entered my mind that populism would defeat capitalism in its country of origin.’ He 

continues: 

The relatively high turnout suggests that the populist camp succeeded 

in mobilising sections of previous non-voters [overwhelmingly] found 

among the marginalised groups who feel hung out to dry [and amongst 

the] poorer, socially disadvantaged and less educated strata [who] 
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voted more often than not for Leave. [Contrary] voting patterns in the 

country and in the cities [and] the geographical distribution of Leave 

votes, piling up in the [de-industrialised] Midlands and parts of Wales 

[…] point to the social and economic reasons for Brexit. 

(Habermas, 2016) 

The differing geographical distribution of turnout in the 2016 US Presidential 

Election, along with a populist surge felt in several countries (Agence France-Presse, 

2016), may have helped Donald Trump in to office. Early results from the 2016 US 

Presidential Election (G. Wallace & Yoon, 2016) suggest that ‘some of the key states 

that propelled President-elect Donald Trump to his win [cast more] ballots this year 

than in 2012, even though overall turnout was down.’ The increasing sophistication, 

professionalisation and internationalisation of political marketing, leading to what 

Lees-Marshment & Lilleker (2012, p343) have termed the ‘marketization’ of politics, 

raises concerns that ‘Political marketing consultants who offer specialist skills and 

experience in political marketing – polling, strategy, voter profiling, segmentation, 

micro-targeting, voter-responsive product design – [now appear to] wield global 

power.’ 

As many of these efforts, as Moore (2016) has noted, use social media ‘to target 

specific voters in marginal constituencies with tailored messages’ it is clear that an 

understanding of politics, communications, geography and technology are required 

to identify these effects. Issues identified in the communications literature are 

discussed next, many of which overlap substantially with the concepts and debates 

outlined above. 
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2.5 Communications literature 

2.5.1 Key publications 

Communications journals, articles and book excerpts provide around 14% of 

literature references with key publications including New Media & Society, Journal 

of Communication, Journal of Broadcasting & Electronic Media, Theory, Culture & 

Society and Journal of Computer-Mediated Communication. 

2.5.2 Key terms 

The number of communications-coded terms (Figure 2-8) in the research literature 

corpus is high, at 24, and the communications literature – including articles 

appearing in newly published journals such as Information, Communication & 

Society (Volume 1, 1998), New Media & Society (Volume 1, 1999) and Mobile Media 

& Communication (Volume 1, 2013) – reflects the comparative recency of scholarly 

enquiry into emergent online communications spaces.  

 

Figure 2-8 – Key communications terms in the literature corpus identified by TF-IDF analysis 
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Key themes include Twitter, Facebook, social media, networks and the Web. Within 

these are themes relating to matters of engagement and trust, sentiment, privacy 

and exposure. The interplay between journalistic output and communications 

created, consumed or shared by individuals (through tweets, posts or blogs) is also 

relevant in the literature. 

Former British Prime Minister Harold Macmillan is supposed to have remarked that 

‘Events, [my] dear boy. Events’ were most likely to derail the careers of senior 

politicians or the process of smooth governance (Ratcliffe, 2016). Whether or not 

Macmillan’s oft-cited words are, in fact, a misquotation (Knowles, 2006) it is clear 

that news diffusion and, especially, the accelerated pace of communication 

surrounding events, represents one of the defining characteristics of politics in the 

Internet age. Wyly (2014, pp28-29) has suggested that ‘the speedy exponential 

cascade’ of events, now recorded in ‘vast networks of proprietary corporate digital 

dossiers [enabling] truly revolutionary transformations in the nature of observation’ 

poses a theoretical challenge for human geographers. Where once, he argues 

(Wyly, 2014, pp29-30), researchers found ‘common ground’ in the use of major 

public data sources, such as the population Census, new spatiotemporalities of Big 

Data and an algorithmic revolution have produced ‘a Kantian temporal distortion 

[where] each day, Facebook is given more than 64,000 years of human expression 

in a digital form readily suited for advanced analyses that exceed the wildest 

mathematical hypotheticals of the quantitative revolutionaries of the 1950s.’ 

Nowhere is this manifestation more apparent than in online political debate, which 

now far surpasses more traditional forms of political expression such as activism, 

public demonstration or party membership (M. Gray & Caul, 2000; Harris & 

Harrigan, 2015; T. J. Johnson & Kaye, 2014). 

In a pre-Internet era, Calhoun (1992) summarised the contribution media channels 

make to a discursive Public Sphere. Referencing Habermas (2011), he suggested 

that the ‘immediacy’ with which we ‘experience radio, film and television’ leads to a 
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focus on ‘personal attributes’ which makes concentration on Habermas’ rational-

critical arguments more difficult to sustain. Calhoun (1992, p24) concluded by 

warning that ‘A personalised politics revives representative publicity by making 

candidates into media stars at the same time the new public relations industry finds 

it easy to engineer consent among the consumers of mass culture.’ The ‘immediacy’ 

in radio, film and television communications which Calhoun identified in 1992 has, 

of course, more recently been joined by new, even more immediate and 

participatory online media systems. Social media websites and mobile applications 

offer both a more ‘immersive’ experience than traditional media, and share their 

ability to transmit sound, still and moving images (Unwin, 2012). 

Dimmick, Chen, & Li (2004, p19) have suggested that ‘in light of the niche theory 

and the theory of uses and gratifications, a new medium survives, grows, competes, 

and prospers by providing utility or gratification to consumers.’ Growth in online 

information access has resulted in ‘changes in use of traditional media’ and what 

Dimmick et al. (2004, p27) consider ‘a competitive displacement effect […] in the 

daily news domain with the largest displacements occurring for television and 

newspapers.’ Earlier studies (Althaus & Tewksbury, 2000, p21) recorded patterns of 

Web browsing amongst university students, ‘where Internet use is woven into the 

fabric of daily life, largely as ‘a source of entertainment’ and speculated that ‘the 

World Wide Web as a news source seems unlikely to diminish substantially use of 

traditional news media.’ More recently, the Reuters Institute for the Study of 

Journalism (N. Newman et al., 2016, p8), based on a survey of over 50,000 people in 

26 countries, has reported that: 

• 51% [of respondents] say they use social media as a source of news each 

week. Around one in ten (12%) say it is their main source. Facebook is by far 

the most important network for finding, reading/watching, and sharing 

news. 
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• Social media are significantly more important for women (who are also less 

likely to go directly to a news website or app) and for the young. More than 

a quarter of 18–24s say social media (28%) are their main source of news – 

more than television (24%) for the first time. 

The Reuters study acknowledges that ‘television news still remains most important 

for older groups’ (Newman et al., 2016, p8) but notes an overall decline in usage 

‘particularly for “appointment to view” bulletins and amongst younger groups’. It 

appears that ‘smartphone usage for news is sharply up, reaching half of [the] global 

sample (53%), while computer use is falling and tablet growth is flattening out.’ 

Many communications studies (Hargittai, Neuman, & Curry, 2012; Macafee, 2013; 

Pennington, Winfrey, Warner, & Kearney, 2015; Weeks, Ardèvol-Abreu, & de 

Zúñiga, 2015) are predicated on an examination of the changing patterns of online 

news consumption, with a general acceptance that rates of online news 

consumption are increasing. If Diehl et al. (2016, p2) are correct in their assertion 

that ‘[even] non-political discussion and social interaction on social media can serve 

as a catalyst for political expression and participation’ then the whole nature of 

political communications is changing. 

Writing in the Editorial introduction to the first edition of Information, 

Communication & Society, Loader & Dutton (1998, pV) state that ‘A new social and 

economic paradigm is said to be restructuring the traditional dimensions of time 

and space within which we live, work and interact, which is based around 

information as the primary resource for social and economic development.’ Manuel 

Castell’s influential trilogy (Castells, 1996, 1997, 1998) proposed The Rise of the 

Network Society. Writing in the Preface to the second edition, Castells (2009, p1) 

recounts how, around the close of the second Millennium, ‘A technological 

revolution, centred around information technologies, began to reshape, at 

accelerated pace, the material basis of society.’ Castells (fore)saw this development 

arising not only through increasing globalisation and the collapse of ‘Soviet-statism’, 
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bringing with it an end to the threats of the Cold War era, but as an 

interdependency amongst world economies based on ‘a new form of relationship 

between economy, state, and society, in a system of variable geometry.’ Key to this 

development, which Castells (2009, p2) identified in financial markets, trade 

systems and even the criminal underworld are ‘Interactive computer networks 

[which] are growing exponentially, creating new forms and channels of 

communication, shaping life and being shaped by life at the same time.’ 

The communications literature is now centred comprehensively on these themes. 

Online ‘Web 1.0’ publications have, largely, been replaced by interactive ‘Web 2.0’ 

applications (O’Reilly, 2005) which promote highly personalised views of the world, 

frequently through advanced recommender systems (Bontcheva & Rout, 2014; 

Mittelstadt et al., 2016; Tao, Zhou, Lau, & Li, 2013) or reliance on content-sharing 

within friend networks (C. S. Lee & Ma, 2012; Ma, Lee, & Goh, 2012; Oeldorf-Hirsch 

& Sundar, 2015). These developments appear to have produced some profound 

effects, with homophilous sharing of ‘likeable’ content displacing wider or more 

rounded views of news and opinion (Hasell & Weeks, 2016; Himelboim, Smith, 

Rainie, Shneiderman, & Espina, 2017; Mousavi & Gu, 2014). 

Mummery & Rodan (2013, p25) have suggested that ‘Because political blog 

networks tend to seek and reinforce existing political opinions they tend to be 

‘‘homophilous’’, falling ‘‘well short of the deliberative ideal’’.’ Finding that 

‘agreement out-numbers disagreement in blog comments by more than 3 to 1’ 

Gilbert et al. (2009, p1) suggest that blogs, including Online Social Networks such as 

Twitter, are ‘Echo Chambers’, where opinions are reinforced and criticism is 

discouraged. Outside academia, the impact of these changes in the nature of 

modern communications have prompted some to question whether or not we face 

the ‘End of Truth’ or a ‘Post Truth’ environment (Noble & Lockett, 2016), a time in 

which ‘Facts are now a quaint hangover from a time of rational discourse, little 

annoyances easily upended’ (Cohen, 2016). 
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The ‘traditional dimensions of time and space within which we live, work and 

interact’ (Loader & Dutton, 1998, pV) are undoubtedly altering as Web-based 

systems predominate. The role of social media in spreading ‘false news’, which 

research shows ‘cascades diffused to between 1000 and 100,000 people, whereas 

the truth rarely [diffuses] to more than 1000 people’ (Vosoughi et al., 2018), is yet 

another manifestation of the rapid dissemination of misinformation which 

networked systems of individuals, computers and robotic systems (‘bots’) allow 

(Bessi & Ferrara, 2016; Bessi, Scala, Rossi, Zhang, & Quattrociocchi, 2014; Metaxas 

& Mustafaraj, 2012; Silva, Silva, Pinto, & Salles, 2013). 

One remarkable facet of this new media and communications landscape is the 

ability for users to share spatialised (coordinate-geotagged) locational information 

alongside posts (Batty, Hudson-Smith, Milton, & Crooks, 2010). The analysis of this 

phenomenon in a political context is the purpose of this research and the literature 

devoted to this development is discussed below. 

2.6 Geographical literature 

2.6.1 Key publications 

Geographical journals, articles and book excerpts provide around 14% of literature 

references with key publications including International Journal of Geographical 

Information Science, Cartography and Geographic Information Science, Political 

Geography, Environment and Planning A and Dialogues in Human Geography. 

2.6.2 Key terms 

The number of high-ranking ‘geographical’ terms (Figure 2-9, p78) in the research 

literature corpus is lower (14) than the preceding two thematic classes yet, as so 

often in Geography, papers with a geographical theme frequently unite ideas 

expressed in greater isolation in the political or communications literature detailed 

above. Concepts of ‘space’ and ‘location’ feature prominently in the geographical 
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literature while the word stem ‘geo’ (for ‘geography’ and ‘geographic’) appears in 

690, or 54.6%, of all saved references. 

 

Figure 2-9 – Key geographical terms in the literature corpus identified by TF-IDF analysis 

Political and communications themes frame this research as the case study OSN 

interactions under investigation are, by their nature, political communications. It is 

reasonably straightforward to view who, what and when someone posted OSN 

content publicly online, but ‘geographical biases and demographic confounds’ 

(Pavalanathan & Eisenstein, 2015) make it much more difficult to determine where 

a tweet or post originated from. 

The challenge of the current research is to determine, using data sets in which IP 

addresses have been masked to protect personal locational privacy, how many of 

the ~8m OSN case study interactions captured in 2012 and 2013-2014, and how 

much of the 3rd party URL content linked to and shared alongside these messages, 

are imprinted with explicit coordinate or more implicit toponymic geographical 

references. Some authors (Z. Cheng, Caverlee, & Lee, 2010) have suggested that 

‘You are where you Tweet’, but since so few users of OSNs post with coordinates 

this is not often the case (Leetaru et al., 2013). Understanding how geographical 

references are expressed, used and shared over online social media, and most 

widely by whom, will determine whether the coordinates posted alongside 

geotagging users’ interactions may be used to reliably track the spread of political 
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opinion and/or (mis)information cascading in message text or linked content 

through social networks. 

Spatialities at different resolutions in OSN data are recorded in Latitude and 

Longitude pairs, in toponymic mentions of place or, at the lowest resolution, in time 

zone encodings from the temporal metadata of interaction creation date/time 

(Section 4.6.1, p164). Only a subset of records (Table 4-8, p170) store precise 

geographical information, while the wildly varying levels of spatial accuracy which 

may be derived from data-mining free-form text or metadata fields such as time 

zone encodings (Tear & Healey, 2017) make accurate assessment of posting 

locations particularly challenging (Section 5.4, p221). 

Social networks, as Quercia, Capra, & Crowcroft (2012) have identified, are human-

built. All OSNs are dependent upon a technological framework of software, servers, 

hosting and the Web, yet OSNs are not simply a product of technological design. 

Rather, they are populated and created by the self-organising sets of relationships 

established amongst individuals and, consequently, tend to mirror several key 

characteristics of the societies within which the individuals are situated. The 

introduction of geotagging functionality on Twitter and Facebook has, therefore, 

provided several fascinating opportunities to derive insights about society using 

Quercia et al.'s (2012) and others’ (Arthur & Williams, 2017; L. Li et al., 2013; 

Longley & Adnan, 2016; Luo, Cao, Mulligan, & Li, 2016; Xu, Wong, & Yang, 2013; 

Yin, Soliman, Yin, & Wang, 2017) varied, and often quantitatively-biased, methods 

of computational Social Network Analysis (SNA). 

Geospatial and spatiotemporal analysis of social media data in the research 

literature corpus springs from the growing ‘etherization of geography’ identified by 

Sui & Goodchild (2001). In a prescient Guest Editorial for the International Journal 

of Geographical Information Science, Sui & Goodchild (2001, p387) noted the 

‘dazzling development of GIS technology’ which, they argued, rendered the 

‘traditional , mostly instrumental, views of GIS – as spatial database, mapping tool, 
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and spatial analytical tool – inadequate to capture the fundamental essence of this 

technology and its social implications.’ Instead, the authors proposed that ‘the 

complex relationship between GIS and society can be better understood if one 

conceives of GIS as new media.’ 

Evidence for this has included widespread deployment of the technology on the 

Web, improved data availability and data sharing over the Internet and use of GIS 

software in systems such as automotive navigation. The development, 

miniaturisation and ubiquitous deployment of Global Positioning System (GPS) 

micro-processor hardware in affordable mobile phone handsets, initially in the US, 

‘to an accuracy of 100m—in the interests of [providing] accurate response to 

emergency calls’ (Sui & Goodchild, 2001, p387) has done most to cement mapping 

and locational awareness into people’s everyday experiences of geography. 

Many applications and studies of what Turner (2006) has termed ‘neogeography’ 

focused on the use of geographical information in disaster response (Gelernter & 

Mushegian, 2011; Goodchild & Glennon, 2010; Granka, 2010). Latterly, there has 

been a more general shift into research surrounding the creation of ‘Volunteered 

Geographic Information’ (VGI; Goodchild, 2007) or ‘Ambient Geographic 

Information’ (AGI; Stefanidis et al., 2013). As Steiger, de Albuquerque, et al. (2015, 

p810) have noted, the ‘growing availability of mobile devices equipped with GPS 

sensors, high performing computers and broadband internet connections with 

advanced server and client-side key technologies, allows users to participate 

actively and create content through mobile applications and location-based 

services’, including OSN platforms. 

The literature covering VGI is extensive, with several notable contributions (Hardy, 

Frew, & Goodchild, 2012; Warf & Sui, 2010; M. W. Wilson & Graham, 2013) and 

much discussion of key enabling technologies, such as OpenStreetMap (Birkin, 

Malleson, Hudson-Smith, Gray, & Milton, 2011; Elwood & Leszczynski, 2013; 

Perkins, 2014). The study of AGI phenomena, which include the OSNs Facebook and 
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Twitter, where the production of geographical data is a by-product of ‘sensor-

based’ activity rather than the purpose of it is, as Steiger, de Albuquerque, et al. 

(2015, p809) have noted, ‘not clearly visible and not easy to locate’; an imbalance 

which this thesis aims to redress.  

Tolbert & McNeal (2003, p175) have suggested that ‘new communications 

technology has changed the way many people gather news and participate in 

politics’ and that the Internet ‘permits users to exchange large amounts of 

information quickly regardless of geographical distance.’ Despite these advances, 

many Western democratic political systems are still characterised by geographical 

forms of political organisation originating ‘with the constitutional reforms of 

Cleisthenes’ in 509 BC (Tridimas, 2011). Democracy, ‘rule of the commoners’, 

requiring open debate in the Assembly of the Ancient Greeks and informing 

Habermas’ notion of the Public Sphere, has now been replaced by a number of 

‘representative democratic’ systems (Dahlberg, 2013) where governance is 

determined by voting outcomes in multiple geographically ‘bound’ constituencies 

(Elden, 2005). 

As Moore (2016) and The Electoral Commission (2018a) have noted, the ability to 

perturb the results of democratic elections through sophisticated electioneering 

and highly targeted political geo-marketing in ‘swing’ constituencies now 

represents a significant threat to existing democratic systems. The election of 

Donald Trump in the 2016 US Presidential Election has, likewise, been surrounded 

by concerns over geo-data-driven campaigning (Albright, 2017; Kohn, 2016) and the 

amazing possibility, identified by the US Central Intelligence Agency (CIA), that 

state-supported ‘Russian hackers’ may have intervened electronically in support of 

Trump’s candidacy (Sanger & Shane, 2016). 

Earlier sections (2.4, p64; 2.5, p72) have detailed political and communications 

themes within the academic literature. It is clear that the study of geo-enabled 

social networks, where much political debate and marketization now takes place, 
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requires a cross-disciplinary approach. Clark & Jones (2013, p312) have suggested 

that ‘Ideally, “mixed-method” approaches should be used to tackle cross-

disciplinary work on spatialization, bringing together for example the strengths of 

quantitative modelling in political science with the robust qualitative case history 

approaches of human geography.’ 

Geography is frequently thought of as a ‘holistic’ discipline (Archer, 1995) and the 

growth in OSNs and increasing production of geotagged content, leading to what S. 

W. Campbell & Kwak (2011), Lee (2012) and Bahir & Peled (2013) have termed 

‘Geo-Social Networks’, is evident both in growing bodies of research output (Chen, 

Vasardani, & Winter, 2017; Hawelka et al., 2014; Qunying Huang & Wong, 2015; 

Humphreys, 2013; Koylu, 2018; S. Li et al., 2016; Licoppe, 2013; McKenzie & 

Janowicz, 2014; Pradeepa & Manjula, 2016; Purves et al., 2018; Steiger, de 

Albuquerque, et al., 2015; Van Diepen, Twigg, Ekinsmyth, & Moon, 2017; Yin et al., 

2017) and novel journal publications such as Mobile Media & Communication 

investigating the characteristics of this new ‘locative media’ (Wilken, 2012). 

Tsou (2015) has suggested that analysing ‘geo-social media’ geographically raises 

several ‘major research challenges for GIScientists’ including, in abridged form: 

1. improving demographic information about users;  

2. creating a multi-scale spatiotemporal analysis framework;  

3. protecting user privacy and locational privacy;  

4. using multi-disciplinary techniques;  

5. linking ‘content’ with ‘context’;  

6. reducing ‘noise’, and;  

7. addressing problems regarding the ‘repeatability’ of research. 

Subsequent sections of this research address these challenges, moving the study of 

geo-located OSN data ‘beyond the geotag’, as Crampton et al. (2013) have 

recommended. Doing so requires sophisticated computer systems and intelligent 
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analyses; the technical and technological themes which frame this research are 

discussed in the following section. 

2.7 Technical literature 

2.7.1 Key publications 

Technical or technological journals, articles and book excerpts provide around 54% 

of literature references with key publications including Computers in Human 

Behavior, Social Science Computer Review, Information, Communication & Society, 

arXiv and First Monday. 

2.7.2 Key terms 

The list of relevant technical terms (Figure 2-10, p84) identified in the research 

literature corpus is extensive, at 65, although some terms (e.g., ‘semantic’, ‘actors’) 

undoubtedly cross thematic coding boundaries. Overall, the technical terms in the 

literature corpus are concerned with the Internet, social networks, big data, 

database systems for query and analysis, graph theory, and software development. 

These themes are explored below. Detailed technical articles, used to inform 

decisions regarding data collection and storage or data analysis and visualisation, 

are referenced more extensively in Chapter 4 (p118). 

The key word ‘online’ is mentioned in 843 (66.7% of all) articles, either in title text 

or in body copy; a slightly lower number of references (727, or 57.5%) mention the 

key word ‘Internet’. Clearly, a literature corpus which results from the collection of 

many recent references covering Online Social Network usage is bound to refer to 

‘the online’ extensively. Ignoring this self-referential loop, the literature frames two 

much broader questions: 1) How should the online be viewed? 2) How should the 

online be studied?  
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Figure 2-10 – Key technical terms in the literature corpus identified by TF-IDF analysis 
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In the context of this research, Papacharissi's (2010) description of A Private Sphere 

provides a useful techno-sociological answer to the first question. Here it is 

suggested that online activities ‘may possess public and private essence, 

imperatives may be personal and political, communications may be intimate and 

mediated, and audiences may be individual or multiplied’ (Papacharissi, 2010, 

p162). The private sphere may be seen as a ‘technologically equipped bridge of 

overlapping and networked spheres […whose continual change in form…] 

illuminates the function of online technologies in a democracy: to connect, to 

create new space…’ (Papacharissi, 2010, p164). These contemporary developments 

are driven by several of the changes in politics, communications and geography 

outlined earlier, but also require an explicitly developed, socio-technologically-

based and cross-disciplinary mode of study. 

Berners-Lee et al. (2006, p771) state that ‘the scale, topology, and power of 

decentralized information systems such as the Web […] pose a unique set of social 

and public-policy challenges’ as the Web is both a technically ‘engineered space’ 

with multiple languages and protocols but has been created, and is used, by 

humans whose ‘interactions are, in turn, governed by social conventions and laws’ 

(Berners-Lee et al., 2006, p769). To fully understand these complexities the authors 

propose Creating a Science of the Web which ‘is about more than modeling the 

current Web. It is about engineering new infrastructure protocols and 

understanding the society that uses them […] It uses powerful scientific and 

mathematical techniques from many disciplines to consider at once microscopic 

Web properties, macroscopic Web phenomena, and the relationships between 

them’ (Berners-Lee et al., 2006, p771). 

Web Science has been called A Provocative Invitation to Computer Science 

(Shneiderman, 2007, p25) as ‘the social perspective [creates a] disruptive shift 

[which] involves moving away from studying the technology toward studying what 

users can do with the technology.’ Berners-Lee and fellow collaborators have 

subsequently expanded considerably upon their original article in Science, setting 
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out a 130-page ‘agenda for the science of decentralised information systems’ 

(Berners-Lee, Hall, Hendler, O’Hara, et al., 2006) and, later (Hendler, Shadbolt, Hall, 

Berners-Lee, & Wietzner, 2008), a further paper describing the ‘systems approach, 

in the sense of “systems biology”’ required to understand the interplay between 

‘Social Interactions, Application Needs and Infrastructure Requirements’ (Hendler 

et al., 2008, Figure 1, p62). 

The idea of the Internet or, more specifically, the World Wide Web as an ‘organism’ 

(Heylighen, 2007) or even ‘emergent Global Brain’ (Mayer-Kress & Barczys, 1995) is 

a fascinating concept, but one that cannot exist without an understanding of some 

of the major drivers supporting this new Kuhnian (1970) paradigmatic shift in 

society’s relationship with technology. Chief amongst these is the emergence of Big 

Data (Halavais, 2015; Jenkins et al., 2016). While many types of human (e.g., social 

network, digital photographic) or sensor-based (e.g., server logs, remotely-sensed 

imagery) Big Data exist, the ‘computational social sciences’ (Lazer et al., 2009) most 

frequently analyse data extracted from online social media platforms in research. 

As Zelenkauskaite & Bucy (2016) have noted: 

Recent decades have witnessed an increased growth in data generated 

by information, communication, and technological systems, giving birth 

to the ‘Big Data’ paradigm. Despite the profusion of raw data being 

captured by social media platforms, Big Data require specialized skills to 

parse and analyze — and even with the requisite skills, social media 

data are not readily available to download. Thus, the Big Data paradigm 

has not produced a coincidental explosion of research opportunities for 

the typical scholar. 

(Zelenkauskaite & Bucy, 2016, p1) 

Several factors are at work, including ‘the cost and control of social media data’ and 

also the ‘order of magnitude increases in the complexity of data storage and 

retrieval and the need for sophisticated statistical tools to analyze it’, prompting 
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Zelenkauskaite & Bucy (2016) to ‘illuminate a curious but growing “scholarly divide” 

between researchers with the technical know-how, funding, or institutional 

connections to extract big social data and the mass of researchers who merely hear 

big social data invoked as the latest, exciting trend in unattainable scholarship.’ The 

gatekeeping concept invoked, surrounding access to data and technology, 

originates from Lewin's (1947) ground-breaking research into ‘group dynamics’ and 

‘action research’.  

Lewin’s theory has been widely applied in several mediated systems, including 

Information and Communications Technology where, for example, news editors or 

systems administrators decide which articles to publish, or which users should be 

granted access rights to data (Deluliis, 2015). OSN Big Data appear to elevate and 

conflate gatekeeping issues. Concerns regarding individual user privacy (Small, 

Kasianovitz, Blanford, & Celaya, 2012), overall data cost, volume, and storage – 

coupled with the specialist technological and statistical skills required of the analyst 

(Iacus, 2014) – all present potential barriers to research. Epistemological and ethical 

limitations in social media Big Data research are more fully discussed in Chapter 3 

(p94) of this thesis. The costs of data acquisition, and practical matters regarding 

the storage and query of large data sets, are discussed in Chapter 4 (p118). 

Outwith these broader concerns the technically themed articles in the research 

literature corpus discuss numerous technical matters; e.g., approaches to 

geoparsing free form text (Alonso-Lorenzo, Costa-Montenegro, & Fernandez-

Gavilanes, 2016; Gelernter & Mushegian, 2011; K.-S. Kim, Kojima, & Ogawa, 2016) 

or methods for storing ‘unstructured’ data (Demchenko, de Laat, & Membrey, 

2014; Kambatla, Kollias, Kumar, & Grama, 2014; Manyika et al., 2011; Puglisi, 

Montanari, Petrella, Picelli, & Rossetti, 2014). As a review of the many terms used 

in the technical literature (Figure 2-10, p84) is outside the scope of this thesis only 

the most salient works touching on political, communications and geographical 

themes have been discussed above. Elsewhere, throughout this thesis, highly 

relevant technical material is referenced extensively. 
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2.8 Gaps in knowledge 

The rise of Castells' (1996) Networked Society, lays bare many elements of 

contemporary human life in digital form. It has been stated (Lazer et al., 2009, pp1-

2) that ‘We live life in the network’, checking email, making phone calls, using 

digital ‘mass transit cards’ and buying food with credit cards; ‘Each of these 

transactions leaves digital breadcrumbs which, when pulled together, offer 

increasingly comprehensive pictures of both individuals and groups, with the 

potential of transforming our understanding of our lives, organizations, and 

societies in a fashion that was barely conceivable just a few years ago.’ OSN 

interactions – some coordinate-geotagged, many containing geographical 

references in text or linked/shared URL content – now offer a remarkable resource 

enabling researchers to examine the spatiotemporal characteristics of modern-day 

life in incredible detail, and at unprecedented scale. These developments hinge 

upon several known findings or, in some cases, implicit assumptions – discussed in 

turn below – which define the current gaps in our knowledge: 

2.8.1 Geotagging rates 

It is clear that coordinate-geotagged ‘location data is incredibly valuable as it 

enables us to establish the geographic context in which the tweeter is immersed at 

the point of data creation’ (Sloan & Morgan, 2015, p2). However, it has also 

become increasingly clear that only small percentages (~1-2%) of OSN data are 

typically geotagged (Leszczynski & Crampton, 2016; Paraskevopoulos & Palpanas, 

2016) with Leetaru et al.'s (2013) trawl through over 1.5 billion tweets in search of 

coordinates oft-cited in the literature. Despite these findings, and some others 

which suggest slightly higher geotagging rates in response to particular events such 

as manmade or natural disasters (Crooks, Croitoru, Stefanidis, & Radzikowski, 

2013), coordinate-geotagged OSN data have been widely used in several 

application domains. There is an implicit assumption that, due to scaling laws and 

massive data volumes, ‘this one percent is already large enough’ (Jiang et al., 2016, 
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p349) for meaningful geographical analyses. It is appropriate to question, however, 

whether ~1% really is ‘enough’, or is representative enough, for coordinate-

geotagged interactions to be used as accurate geographical proxies for all social 

media communications, particularly in political contexts. 

2.8.2 Representativeness 

Users of Facebook and Twitter are not thought to be representative of the general 

population (Mellon & Prosser, 2017) and coordinate-geotagging users of OSN 

platforms are not thought to be representative of all such users (Sloan & Morgan, 

2015). There is evidence, during elections (Barberá & Rivero, 2015, p712), that 

‘Twitter users who write about politics tend to be male, to live in urban areas, and 

to have extreme ideological preferences.’ There has been a ‘perennial criticism […] 

regarding the lack of demographic information’ in social media data in its 

application to social science research (Sloan et al., 2013, p1). Mislove et al. (2011, 

p554) have found ‘that the Twitter population is a highly non-uniform sample of the 

[US] population’ and Tufekci (2014) has warned of the dangers of 

‘representativeness, validity and other methodological pitfalls’ associated with 

‘social media big data research’. While some advances have been made in 

understanding the demographic composition of coordinate-geotagging (Sloan & 

Morgan, 2015) and non-coordinate-geotagging (Sloan, Morgan, Burnap, & Williams, 

2015) users of OSN platforms, ‘little is known [about] divides between Twitter 

users, based on the spatial and temporal distribution of the content they produce’ 

(Rzeszewski & Beluch, 2017, p1). One, so far unexplored, aspect of this puzzle is the 

degree to which differential usage of toponymic mentions of place in OSN 

interactions created by coordinate-geotagging and non-coordinate-geotagging 

users may intersect with the ‘localness assumption’ (I. L. Johnson et al., 2016) often 

implicitly adopted when spatially-tagged social media messages are used in 

research. 
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2.8.3 Toponymic usage 

Expressions of ‘place’ in OSN interactions and metadata are much more prevalent 

than coordinate-geotagged ‘spatialities’. Ambient geospatial information in OSN 

messages ‘often has geographic footprints, for example, in the form of locations 

from where the tweets originate, or references in their content to geographic 

entities’ (Stefanidis, Crooks, et al., 2013, p319). It has been suggested (Goodchild, 

2013, p280) that ‘a large proportion of what is currently being envisioned as big 

data will be georeferenced, that is, will specify observations or facts about some 

location on or near the earth’s surface.’ In this study, around 25% of ~8 million OSN 

interactions (Section 5.2.2, p190) contain some form of toponymic information in 

message text, with more found in associated metadata. Toponymic mentions may 

be ‘geo-parsed [using] location inference techniques’ (Ajao et al., 2015) and an 

expanding number of ‘geographic information retrieval’ tools (Purves et al., 2018). 

A substantial body of research work is devoted to geoparsing both modern-day 

(Chen et al., 2017; Smart, Jones, & Twaroch, 2010; Zhang & Gelernter, 2014) and 

historical (Southall, Mostern, & Berman, 2011; Southall, von Lunen, & Aucott, 2009) 

toponyms using a range of gazetteer, natural language processing and other 

methods, e.g., neural networks or language modelling. Some of these systems have 

been open-sourced (Berico-Technologies, 2017; Bontcheva et al., 2013; Defence 

Science and Technology Laboratory, 2015; Language Technology Group, 2014) and 

others (IBM, 2017a) are proprietary. Three systems have been used here (Section 

4.4.1, p147) to help determine how differential expressions of geographicality have 

been made in message text and linked/shared URL content by coordinate-

geotagging and non-coordinate-geotagging users of OSN platforms. Doing so 

deepens our understanding of how geographical senses of ‘space’ and ‘place’ are 

expressed in online social media interactions, and most frequently by whom. 
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2.8.4 Localness 

The ‘localness assumption’, identified by I. L. Johnson et al. (2016), has only recently 

been stated (Section 1.7, p34) but has been ‘implicitly assumed’ in most studies 

involving coordinate-geotagged social media data. In this type of research, the 

authors suggest (p515), ‘An important [underlying] assumption […] is that social 

media VGI is “local”, or that its geotags correspond closely with the general home 

locations of its contributor [however, a]nalysis of ‘three separate social media 

communities (Twitter, Flickr, Swarm) [shows] that this localness assumption holds 

in only about 75% of cases.’ The remaining 25% of coordinate-geotagged content is, 

on average, ‘non-local to an area’ as smartphone-based online locational posting 

and changing patterns of human mobility have perturbed previously-observed, and 

generally more static, relationships between geotagged and home locations. I.L. 

Johnson et al.’s work on ‘localness’ raises another fundamental question, which is 

the primary topic addressed by this research. It is assumed that coordinate-

geotagging is important, that geotagging matters, because geotagging users 

mention proximal locations as well as depositing their Latitude and Longitude 

coordinates when they post, but do they? Who makes most geographical 

references in their message text? Who links to and shares URLs making the most 

frequent toponymic mention of place; coordinate-geotagging or non-coordinate-

geotagging users of OSN sites? 

2.8.5 Testing the Geographicality Assumption 

The research presented here tests this Geographicality Assumption using a research 

design and methodology described in the following chapter and a set of data 

collection, storage, augmentation and visualisation systems detailed in Chapter 4 

(p118). Results from this research are presented in Chapter 5 (p186) with additional 

findings given in Chapter 6 (p227). 
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2.9 Summary 

Sui & Goodchild (2011, p1746) have stated that ‘social media [has] become more 

locationally aware’, yet little attention has been paid by Geographers to the 

neogeography of electoral events (Steiger, de Albuquerque, et al., 2015; Section 

2.5, p91). Why do some people choose to post with coordinates? Do they post 

differently? Are they atypical demographically? Do they link to different types of 

material? Do they use geography differently? Some work has been conducted in 

these areas (e.g., Hemsley & Eckert, 2014) but much scholarly research has 

exhibited a simplistic ‘fetishization of [the Latitude and Longitude] geotag’ itself 

(Leszczynski & Crampton, 2016).  

The political and communications literature features considerable debate regarding 

recent growth in online ‘political consumerism’ (de Zúñiga et al., 2014), questioning 

whether this is increasing political participation or whether it is simply a form of 

‘prosumption’ (Paltrinieri & Esposti, 2013) or ‘media fandom’ (Sandvoss, 2013, 

p252). Habermas' (2011) description of a Public Sphere, an open and liberal arena in 

which public deliberation informs democratic opinion, is contrasted with what 

Papacharissi (2010, p131) has described as ‘a private sphere of interaction […] 

located within the individual’s personal and private space.’ The sharing of news and 

opinion within this space has been found to exhibit a good deal of homophilous 

behaviour (Glynn, Huge, & Hoffman, 2012; Yonghwan Kim, Hsu, & de Zúñiga, 2013; 

Messing & Westwood, 2012) such that ‘if politics […] is discussed, new information 

may not be acquired because people are only sharing like-minded views’ (Gerber, 

Huber, Doherty, & Dowling, 2012, p851). This is a problem which appears especially 

acute as researchers have now shown that ‘fake news’ travels further and faster in 

social networks than ‘real news’ (Vosoughi et al., 2018).  

As so many political discussions touch on geography (e.g., ‘What will the vote be in 

Ohio?’, ‘Can the SNP win in Dundee?’) the purposeful distribution of geo-targeted 

political advertising, itself containing geographical text, may be highly effective. 



Geotagging matters? 

93 

 

Campaigning of this type, especially when behavioural triggers are also employed 

(Section 1.1, p1), is generally considered detrimental to ‘rational-critical’ political 

deliberation (Habermas, 2011) and is thought to pose considerable dangers to 

democracy. Writing in The Times, Charter (2018), reporting from Washington D.C. 

on the US Senate’s latest investigations into misinformation campaigns ahead of 

the November 2018 primaries, has stated that ‘Western democracies face a 

relentless threat from hackers determined to undermine elections.’ Charter’s 

report contains quotes from Sheryl Sandberg, Mark Zuckerberg’s deputy at 

Facebook, stating that the site ‘stopped millions of attempts to register bogus 

accounts every day’ while admitting that ‘3 to 4 per cent of current users were 

“inauthentic” and did not represent real people’, a number amounting to tens of 

millions of Facebook’s ~2 billion total user base. Jack Dorsey, founder and chief 

executive of Twitter, also present at the hearing, claimed to be blocking ‘500,000 

phone log-in attempts a day and pledged “tectonic” changes [to the site] to prevent 

manipulation.’ Speaking for the US Department of Homeland Security, Kirstjen 

Nielsen recounted how her department was created to ‘prevent another 9/11’ but 

that she now believed ‘an attack of that magnitude is now more likely to reach us 

online than on an aeroplane. Cyberspace is now the most active battlefield, and the 

attack surface spreads into every single Amercian home’ (Charter, 2018). 

Attempts to track or monitor the spread of political opinion or (mis)information 

deliberately disseminated via social media are hampered by online anonymity, low 

levels of coordinate-geotagging amongst OSN users, platform privacy policies 

redacting potentially useful information in interaction metadata (e.g., IP addresses) 

and wide-ranging technical difficulties associated with storing and text-mining very 

large volumes of data (Chapter 4, p118). There are also several profound 

espistemological, methodological and ethical issues surrounding the investigation 

of message text and related data created by individuals’ who, although posting 

publicly online, have not been conventionally co-opted into the research study. 

These subjects are examined in the following chapter of this thesis. 
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3 RESEARCH DESIGN 

3.1 Introduction 

This research is designed to test the Geographicality Assumption, that coordinate-

geotagging users are the most geographically expressive of all OSN users, by 

addressing three research questions: 

1. How can baseline ‘geographicality’ be assessed and categorised in OSN 

data? 

2. Does NLP-detectable ‘geographicality’ in message text increase in line with 

‘spatiality’? 

3. Does NLP-detectable ‘geographicality’ in linked/shared 3rd party content 

increase in line with ‘spatiality’? 

To answer these questions, it is necessary to acquire, store, augment and query 

social media data and to tabulate, analyse and visualise results. It is also necessary 

to understand epistemological facets of social media production and to adopt and 

develop an appropriate methodology for the research. This chapter begins by 

addressing these latter topics before the following chapter on research methods 

(p118) describes ‘what was done to answer the research question[s], describe[s] 

how it was done, justif[ies] the experimental design, and explain[s] how the results 

were analyzed’ (Kallet, 2004, p1229). Finally, this chapter concludes by considering 

ethical issues in social media analysis, which are especially relevant as none of the 

~2.4m users whose messages have been analysed here have been conventionally 

co-opted into this study. 

It has been suggested that ‘The era of big data has created new opportunities for 

researchers to achieve high relevance and impact [as the] scientific paradigm shift 

toward computational social science [has enabled] fundamental changes [in] the 

research questions we can ask, and the research methods we can apply’ (R. M. 
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Chang et al., 2013, p67, author's italics). Billions of users (Figure 3-1) now post 

messages on social media platforms such as Facebook and Twitter; deliberately, or 

unwittingly in some cases (Bertino & Matei, 2015; Cresswell, 2014), depositing their 

thoughts and opinions in the public domain. The users’ message text or link shares 

and the associated metadata bundle which contains the date of posting, the 

number of ‘friends’ and ‘followers’, indicators of importance within the network 

site, coordinate-geotags if available, and much else besides, provides a rich set of 

content and attributes for research. 

 

Figure 3-1 – Monthly Average User (MAU) counts, in millions, for major social media sites 
(Statista, 2018a) 

There has been an explosion in social media usage and in Big Data research (Figure 

2-2, p57), with a corresponding increase in the number of scholarly papers devoted 

to these subjects (Chapter 2, p51 and Figure 2-2, p57). These developments have 

not been universally welcomed. Longley has warned (Groom & Booth, 2016) of the 

‘delusional and at best misleading’ nature of Big Data which, he says, ‘can be 

described as the “exhaust” from millions of daily transactions, including social 

media, from which it is possible to gain some insight but to what populations?’ 

Wyly (2014, p35) has warned of the dangers of a ‘new quantitative revolution’ in 
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Geography as ‘Big data enables and encourages empiricist data-mining logics 

unhinged from the positivist framework of assumptions, hypotheses, and causal 

explanation.’ Methodological problems with OSN Big Data research have been 

comprehensively detailed by Tufekci (2014) and several other authors have raised 

questionmarks over the utility of Big Data research, both generally (Fuchs, 2017a; 

Hargittai, 2015; Iacus, 2014) and in a Geographic Information Science (GIScience) 

context (Goodchild, 2013; Miller & Goodchild, 2015; Tsou, 2015). 

The intersection of Big Data, location, sentiment, unfamiliar data structures, 

technologies and processes presents particular challenges to GIScience, forcing new 

requirements to efficiently handle and analyse huge scale, text heavy, un/semi-

structured, spatiotemporal data, often derived from Web-based sources (S. Wang, 

2013; Yousfi, Chiadmi, & Nafis, 2016). This research uses mapping, data analytic and 

text-mining approaches to examine the online ‘spatialisation of political behaviours’ 

(Clark & Jones, 2013, p313). The following sections set out the epistemological and 

methodological background to the study. Later in the chapter ethical matters are 

addressed.  

3.2 Epistemology 

United States Secretary of Defense Donald Rumsfeld memorably stated, when 

asked about the lack of evidence linking the Iraqi government to the supply of 

'weapons of mass destruction' (WMD) to terrorist groups at a US Department of 

Defense (DoD) news briefing on 12 February 2002, that: 

Reports that say that something hasn't happened are always interesting 

to me because as we know, there are known knowns: there are things 

we know we know. We also know there are known unknowns: that is to 

say we know there are some things [we know] we do not know. But 

there are also unknown unknowns – the ones we don't know we don't 
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know. And if one looks throughout the history of our country and other 

free countries, it is the latter category that tends to be the difficult one. 

(Rumsfeld, 2011, pXIII) 

As Logan (2009, p712) explains, the idea of ‘Known knowns, known unknowns, 

[and] unknown unknowns’ is not a new one. Indeed, ‘the concept of the unknown 

unknown existed long before Donald Rumsfeld gave it a new audience.’ 

Epistemologically, however, the notion of different levels of knowledge, or 

uncertainty, fits well with OSN data analysis. Publicly available OSN data sets are 

characterised by uncertainty in multiple dimensions: 

• Demographically – It is impossible to know, with certainty, whether 

individual users are male or female or, even, how old they are. The same 

holds true for ethnicity and a raft of other demographics (Qunying Huang & 

Wong, 2016; Mislove et al., 2011) commonly used as controls in population-

based or survey research (Gittelman, Thomas, Lavrakas, & Lange, 2015). 

Automated demographic classification has been attempted (Pennacchiotti & 

Popescu, 2011) but, since we do not know whether users are who they 

claim to be (e.g., their avatar photograph may have been misappropriated 

and is not their true likeness or, even, ethnicity; they may use a female 

name when they are male) results may have only limited utility. 

• Geographically – it is equally impossible to know, with certainty, whether 

individual users are located where they say they are. It is difficult to 

determine whether geo-references in user taglines (e.g., ‘I’m [forename], 

from Denver’), user posts (e.g., ‘Hi, visited [some location] today’) or 

Latitude and Longitude geotags are accurate. Also, not all users posting with 

coordinates are humans using GPS-enabled mobile smartphone devices; 

Echeverría & Zhou (2017) have detected substantial ‘botnets’ making 

spatialised posts on Twitter. Whether or not coordinates are fully trusted, it 

is difficult to determine whether individual OSN posts are made from home, 
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work, vacation or other locations (Aladwani, 2015; Warf & Sui, 2010). 

Diurnal analyses of OSN feeds (Morales et al., 2017) goes some way to 

addressing these problems, but significant doubts about ‘inflated granularity 

in Spatial Big Data’ remain (Dalton & Thatcher, 2015) 

• Semantically – Not unsurprisingly, given the above, it is difficult to know 

whether what we observe on OSNs is genuinely the opinion of the user 

(Which user? Where?), whether accounts or topics might have been 

hijacked (Ferrara et al., 2013) or whether content is being deposited 

robotically (Boyd & Crawford, 2012; Roy & Zeng, 2015). ‘Ghost accounts’ or 

‘bots’ (Barberá, Jost, Nagler, Tucker, & Bonneau, 2015) are thought to have 

distorted the outcome of the 2016 US Presidential Election (Bessi & Ferrara, 

2016) and may have played a role in earlier events (Shin, Jian, Driscoll, & 

Bar, 2017). ‘Fake news’ stories are easily spread on OSNs (Kaplan & 

Haenlein, 2010) and it appears that growing numbers of individuals, e.g., in 

Macedonia, are involved in the production of fake, and highly profitable, 

online ‘clickbait’ masquerading as news (Kirkby, 2016). 

Targeted ‘computational propaganda’ appears to be a growing problem in several 

established democracies. In the US, Howard, Kollanyi, Bradshaw, & Neudert (2017, 

p4) have found that ‘Many of the swing states getting highly concentrated doses of 

polarizing content [in 2016] were also among those with large numbers of votes in 

the Electoral College.’ In Kenya, Cambridge Analytica mined voters’ data ‘to help 

President Uhuru Kenyatta win disputed elections. Over two presidential election 

cycles, it presided over some of the darkest and most vicious campaigns Kenya has 

ever seen’, ‘poisoning’ democracy in that country (Madowo, 2018). It is currently 

unclear, and may eventually prove impossible to determine (W. Davies, 2018), 

whether these interventions by companies or state-sponsored actors have had any 

direct impact or ‘clear monolithic effects’ on electoral outcomes (Dimitrova & 

Matthes, 2018, p333). More research is clearly required to understand how 

(mis)information travels through social media channels. Tracking the geographical 
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spread of such communications is complicated by low rates of coordinate-

geotagging (Section 2.6, p77) and imprecise locational references in other metadata 

fields (e.g., user place of registration) sometimes present in OSN data.  

As Martin (2010, pIX) has stated, our questioning of where knowledge comes from 

and how we gain ‘belief’ in it is something that ‘Philosophers have been thinking 

about […] and arguing with each other about […] for at least two thousand years.’ 

Boyd & Crawford (2012, p662) have argued that ‘Given the rise of Big Data as a 

socio-technical phenomenon […] it is necessary to critically interrogate its 

assumptions and biases.’ These arise from the ‘interplay of technology, analysis and 

mythology’ in which increased computational power and ‘algorithmic accuracy’ 

have led to a ‘widespread belief that large data sets offer a higher form of 

intelligence and knowledge that can generate insights that were previously 

impossible, with the aura of truth, objectivity, and accuracy’ (Boyd & Crawford, 

2012, p663). The authors suggest that these developments pose six ‘critical 

questions’ for Big Data research, reproduced in bold text below, alongside a precis 

of their arguments and select quotes: 

1. Big Data changes the definition of knowledge – Just as ‘Fordism’ changed 

the nature of manufacturing and work the availability of Big Data has 

produced a ‘radical shift in how we think about research’ raising profound 

epistemological and ethical concerns, including ‘how we should engage with 

information, and the nature and the categorization of reality.’ Algorithmic 

certainty (also criticised by Mittelstadt et al., 2016) should be avoided, 

alongside any adoption of the ‘end of theory’ ideas professed by Anderson 

(2008), who has argued that if ‘we can track and measure […] why people do 

what they do […] with unprecedented fidelity [then with] enough data, the 

numbers [will] speak for themselves’ without the need for theory. 

2. Claims to objectivity and accuracy are misleading – Web-sourced data sets, 

which are ‘often unreliable, prone to outages and losses’ should not be 
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treated inviolably. The ‘mistaken belief that qualitative researchers are in 

the business of interpreting stories and quantitative researchers are in the 

business of producing facts’ leads to inflated claims of objectivity and 

accuracy which are implausible as Big Data analysis ‘is still subjective’ and 

human behaviours expressed in social media messages cannot be reduced 

to quantitative certainties. Cresswell (2014) has also stated that this ‘culture 

of numbers’ is dangerous, affecting institutional decisions to fund numerical 

research in the humanities as ‘soft’ subjects attempt to become ‘hard’. 

3. Bigger data are not always better data – Giardullo (2015) has published a 

paper with a similar title, arguing (p529) that ‘claims for the methodological 

power of bigger and bigger datasets, as well as increasing speed in analysis 

and data collection, are creating a real hype in social research.’ This hype 

raises concerns, he argues, when the validity of research may be called into 

question if Big Data sources are the primary ‘or (even worse) [the] unique 

source of information’ used in such studies. Representativeness, ‘wholeness’ 

(Boyd & Crawford, 2012, p669) and sampling strategies may skew research 

findings and, even if Big Data are bigger, these problems do not necessarily 

make them better than more traditional, and tightly-controlled, fieldwork. 

4. Taken out of context, Big Data loses its meaning – Here Boyd & Crawford 

(2012, p671) argue that ‘Context is hard to interpret at scale and even 

harder to maintain when data are reduced to fit into a model.’ A fixation on 

mathematically modelling traits of human behaviour, particularly ‘social 

graph’ elements recorded in Twitter retweet or Facebook friend data that 

broadly appear, but imprecisely equate, to real sociological network 

relationships (e.g., tie strength) fails to acknowledge that ‘Not every 

connection is equivalent to every other connection, and neither does 

frequency of contact indicate strength of relationship.’ Social networks do 

not provide a fully accurate reflection of societies or of all social processes, 

interactions and relationships which exist in real life. 
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5. Just because it is accessible does not make it ethical – The recent 

Cambridge Analytica scandal (Albright, 2017; Cadwalladr & Graham-

Harrison, 2018; Persily, 2017) has added fuel to the fire identified by Boyd & 

Crawford's (2012) earlier reporting of the somewhat surreptitious 

monitoring of 1,700 college students by K. Lewis, Kaufman, Gonzalez, 

Wimmer, & Christakis (2008), itself later eclipsed by the ‘Facebook 

experiment’ (BBC News, 2014), in which researchers sought to model 

‘massive-scale emotional contagion’ by actively manipulating ‘the extent to 

which people (N = 689,003) were exposed to emotional expressions in their 

News Feed’ (Kramer, Guillory, & Hancock, 2014). Issues of privacy, trust and 

consent are involved and are discussed in more detail in Section 3.4 (p111). 

6. Limited access to Big Data creates new digital divides – The sixth ‘critical 

question’ for Big Data research involves access and divides, as Boyd & 

Crawford (2012, p673) note that ‘Much of the enthusiasm surrounding Big 

Data stems from the perception that it offers easy access to massive 

amounts of data’ before asking ‘But who gets access? For what purposes? In 

what contexts? And with what constraints?’ These issues have more 

recently been covered by Zelenkauskaite & Bucy (2016) who identify a 

dangerous trend for ‘unattainable scholarship’ as only those with the funds, 

and Big Data skill sets, are able to purchase, access, store and analyse 

‘digital traces of human behavior that are available online.’ 

Boyd & Crawford's (2012) work has been influential, with over 1,100 CrossRef 

citations, 44 of which are recorded in the research literature corpus. These 

epistemological and ethical concerns, which overlap significantly with various 

methodological issues identified in the following section, frame this research. 

Digital data deposited on, and sampled from, OSN platforms clearly exhibit several 

profound questions of believability, and the use of these data sets in research raises 

yet more important questions regarding contextualisation, over-quantification, 

privacy, consent, ethics and the ‘problematic ontological and epistemological claims 
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[of] datafication [in which] (meta)data have become a regular currency for citizens 

to pay for their communication services and security’ (Van Dijck, 2014, pp197-198). 

These issues form an area of active and ongoing research (Barassi, 2016; Fuchs, 

2017a), and are discussed in more detail below and in Section 3.4 (p111) of this 

thesis. 

3.3 Methodology 

This research adopts a methodology which Andrienko, Andrienko, & Gatalsky (2003, 

p503) describe as an ‘exploratory analysis’ approach to visualising and 

understanding spatiotemporal data, combined with ‘the robust qualitative case 

history approaches of human geography’ (Clark & Jones, 2013, p312). Although all 

OSN messages are inherently discursive, and hence qualitative in nature, associated 

metadata and the large number of records in the case study data sets demand a 

largely quantitative, computerised, set of research methods. Consequently, 

analytical processes (Chapter 4, p118) and subsequent results (Chapter 5, p186 and 

Chapter 6, p227) may be criticised through choice of methodology, method or both. 

The ‘intellectual weakness’ stemming from ‘the wave of super-positivism and the 

mania for quantification which swept all the social sciences in the nineteen-sixties’ 

was identified by Massey in her Introduction to Geography matters! (Massey & 

Allen, 1984, p2). More recent reviews (Ceron, Curini, Iacus, & Porro, 2014; Ceron & 

Memoli, 2016; Darmon, Omodei, & Garland, 2014; Iacus, 2014; Tufekci, 2014) 

identify similar concerns in the current ‘Gold Rush’ (Felt, 2016; Tsou, 2015) towards 

a Big Data-driven, quantitatively-based, analytical future. 

Tufekci (2014), in an expansive article, has outlined several Big questions for social 

media big data, which include Representativeness, validity and other 

methodological pitfalls. She concludes by stating (Tufekci, 2014, p513) that ‘Social 

media big data is a powerful addition to the scientific toolkit. However, this 

emergent field needs to be placed on [a] firmer methodological and conceptual 

footing. Meaning of social media imprints, context of human communications, and 
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nature of socio-cultural interactions are multi-faceted and complex. People’s 

behavior differs in significant dimensions from other objects of network analyses.’ 

Tufekci's (2014) methodological pitfalls in ‘social media big data’ research cover five 

areas which are discussed, with some quotations from her paper under the original 

headings, reproduced in bold type, below: 

1. Model Organisms and Research: Twitter as the Field’s Drosophila 

Melanogaster – Twitter, in social media analysis, has become analogous to 

biologists’ experimentation using fast-breeding (and cheap-to-use) 

Drosophila melanogaster fruit flies. Twitter is chosen ‘mostly due to 

availability of data, tools and ease of analysis’ but also because most data 

from the other major English-language OSN, Facebook, is not available 

publicly owing to tighter default or user-optioned privacy settings.  

2. Hashtag Analyses, Selecting on the Dependent Variable, Selection Effects 

and User Choices – Filtering on established Twitter hashtags (e.g., #Obama) 

‘select[s] on a dependent variable, and hence display[s] the concomitant 

features and weaknesses of this methodological path […as…] inclusion of a 

case in a sample depends on the very variable being examined.’ 

3. The Missing Denominator: We Know Who Clicked But We Don’t Know 

Who Saw Or Could – ‘One of the biggest methodological dangers of big data 

analyses is insufficient understanding of the denominator. It’s not enough to 

know how many people have “liked” a Facebook status update, clicked on a 

link, or “retweeted” a message without knowing how many people saw the 

item and chose not to take any action.’  

4. Missing the Ecology for the Platform – ‘Most existing big data analyses of 

social media are confined to a single platform (often Twitter, as discussed.) 

However, most of the topics of interest in such studies, such as influence or 

information flow, can rarely be confined to the Internet, let alone to a single 

platform [as information] in human affairs flows through all available 

channels.’ 
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5. Inferences and Interpretations – ‘The question of inference from analyses 

of social media big data remains underconceptualized and underexamined. 

What’s a click? What does a retweet mean? In what context? By whom? 

How do different communities interpret these interactions? As with all 

human activities, interpreting online imprints engages layers of complexity.’ 

An awareness of these methodological problems, Tufekci (2014) suggests, ‘should 

be incorporated into the review process and go beyond soliciting “limitations” 

sections’ in research work; hence, these issues are covered here in some depth. In 

response to Tufekci’s observations, and following the same numbering system, it 

should be stressed that: 

1. The current study examines both Twitter and Facebook data – Twitter 

provides the bulk (~90%) of the OSN data under examination. Facebook data 

does, however, offer a useful counterpoint. Facebook message text is much 

longer, and metadata differs substantially. Differences between the two 

OSN data sources are examined in Chapter 4 (p118) and Chapter 5 (p186). 

2. Hashtag filtering has not been used – A wide range of search terms, rather 

than one or two hashtags, have been used as filters (Appendix 7, p432) in 

both case studies (Section 4.2.4, p126). Also Twitter’s Firehose, accessed 

through DataSift, has been used for data collection rather than the free and 

much more commonly used 1% Streaming API. Even though the selection of 

terms is much wider than ‘hashtag filtering’, there is still a danger of 

‘selecting on dependent variables’. In practice, as the data purchase and 

technical cost of consuming all OSN data surrounding any given event would 

be enormous, filtering of some sort is an inevitable feature of this 

methodology. 

3. ‘The missing denominator’ is missing– It is undeniably true that there 

remain great difficulties in knowing how many people have looked at 

Twitter tweets or Facebook posts and chosen not to retweet, or like, the 
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content. Currently, re-weighting retweets or likes relative to impressions in 

this way is impossible as the pageview data which would enable this analysis 

is not released by any OSN platform operator. 

4. Examining the ecology surrounding the platform – The geographicality of 

interactions made during electoral events are considered here. It is apparent 

that the surrounding media or ‘information ecology’ significantly affects 

OSN traffic, as evidenced, e.g., by the three spikes in OSN posts 

accompanying the televised 2012 US Presidential Candidate Debates (Figure 

1-3, p25). Conventional media both influences OSN traffic and is influenced 

by it; this research considers the wider ecologies surrounding these bi-

directional effects.  

5. Suggesting inferences and interpretations – Tufekci points out that ‘As with 

all human activities, interpreting online imprints engages layers of 

complexity.’ This research, drawing on a wide range of literature with inter-

disciplinary political, communications, geographical and technical themes 

(Chapter 2, p51), suggests several inferences and interpretations. As 

Eisenhardt (1989, p532) has noted, the case study ‘research approach is 

especially appropriate in new topic areas’ where ‘the tie to actual data [may 

permit] the development of testable, relevant, and valid theory.’ 

The data under investigation are, at once, both qualitative (text messages, links, 

linked text) and quantitative, featuring many associated metadata fields of varying 

importance. As a product of Big Data, the ~8 million OSN messages collected are 

simply too voluminous to analyse individually. Consequently, a hybridised case 

study/exploratory analysis methodology, making full use of modern computerised 

techniques, has been adopted. This is described in the following sections. 

3.3.1 Case study methodology 

Labaree (2017) states that ‘A case study is an in-depth study of a particular research 

problem rather than a sweeping statistical survey or comprehensive comparative 
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inquiry. It is often used to narrow down a very broad field of research into one or a 

few easily researchable examples. The case study research design is also useful for 

testing whether a specific theory and model actually applies to phenomena in the 

real world. It is a useful design when not much is known about an issue or 

phenomenon.’ Currently, ‘not much is known about [the] phenomenon’ (Labaree, 

2017) under investigation; the differential usage of ‘space’ and ‘place’ in politicised 

social media discourse (Chapter 2, p51). 

Gerring (2006) highlights the difference between ‘cross-case’, and ‘within case’ (or 

‘case study’), methodologies. In order to learn how to build a house, Gerring (2006, 

p1) explains, one  could ‘study the construction of many houses – perhaps a large 

subdivision or even hundreds of thousands of houses [or] one might study the 

construction of a particular house.’ When applied to the social sciences, the latter, 

case study-based approach, enables researchers to study ‘a few cases more 

intensively’ rather than ‘observ[ing] lots of cases superficially.’ Social science 

research work of this type ‘rests implicitly on the existence of a micro-macro link in 

social behaviour’, which may take several forms (Gerring, 2006), e.g., ‘For 

anthropologists and sociologists, the key unit is often the social group (family, 

ethnic group, village, religious group, etc.). For psychologists, it is usually the 

individual. For economists, it may be the individual, the firm, or some larger 

agglomeration. For political scientists, the topic is often nation-states, regions, 

organizations, statutes, or elections.’ 

In this research, the two case studies chosen (Section 4.2.4, p126) focus on 

elections taking place in nation states; the US and Scotland. As political 

communications now transcend national boundaries (Agnew, 2013; Ó Tuathail, 

1998) no geographical boundaries have been enforced during case study data 

collection, although filtering on language (English, almost exclusively) has been 

applied. The unit of study is the ‘interaction’, in the form of a Twitter tweet or 

Facebook post, and the ‘micro-macro link’ proceeds from interactions, to users, to 
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places (e.g., identifiable towns or cities), to place ‘agglomerations’ (e.g., states, 

constituencies or, even, time zones) and ultimately to countries and the entire 

world. 

3.3.2 Exploratory methodology 

Labaree (2017), states that an exploratory design is especially useful when ‘there 

are few or no earlier studies to refer to or rely upon to predict an outcome’ and 

that this approach may be used to ‘establish an understanding of how best to 

proceed in studying an issue or what methodology would effectively apply to 

gathering information about the issue.’ Exploratory research methodologies can 

provide a ‘well grounded picture of the situation being developed’ leading to the 

‘generation of new ideas and assumptions’ which can be used to develop ‘tentative 

theories or hypotheses’ (Labaree, 2017) in a process of refinement which may help 

determine the feasibility of future studies and directions for future research. 

In a spatiotemporal GIScience context, the work of Gennady and Natala Andrienko 

and collaborators has proven particularly instructive (G. Andrienko et al., 2013, 

2010; G. Andrienko, Andrienko, Fuchs, & Wood, 2017; G. Andrienko, Andrienko, & 

Wrobel, 2007; N. Andrienko, Andrienko, Fuchs, Rinzivillo, & Betz, 2015; N. 

Andrienko et al., 2003; Keim et al., 2008). These authors have focused on 

‘exploratory spatio-temporal’ visualisation, or analytical, approaches, noting (N. 

Andrienko et al., 2003, p504) that ‘Modern computer technologies provide better 

than ever before opportunities for storage, management, visualization, and analysis 

of dynamic, i.e. temporally variable, data, including dynamic spatial data (further 

referred to as spatio-temporal data).’ Building on the work of Peuquet (1994) in 

identifying ‘three components [of spatio-temporal] data: space (where), time 

(when) and objects (what)’ N. Andrienko et al. (2003, p509) propose a classification 

scheme, ‘taking time as [its] focus’ in which: 
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1. Time is [a] given while other types of information (objects, locations, 

properties, relationships) need to be discovered and described. We 

shall schematically designate this type of task as when  where + 

what. 

2. Time needs to be discovered for given information of other types. 

This type of task will be further designated as where + what  

when. 

This framework has proven particularly useful in exploring spatiotemporal OSN 

data, which encodes locations in various ways (geotags, toponyms etc.) and 

features many types of ‘objects’ (interactions, users etc.) together with many 

potential spatial and/or temporal aggregations ranging from locations at different 

scales to the passing of time measured in minutes, hours or weeks; all of which may 

be accompanied by shorter or longer-phased political events. As the amount of text 

in the OSN corpus is vast, at over 230 million space-tokenised words, a further 

exploratory technique involves the use of NLP software (Section 4.4.1, p147), and 

associated database work, to make sense of a very large volume of free-form text. 

3.3.3 Hybrid case study/exploratory methodology 

The methodology used in this research is a hybrid of the case study and exploratory 

approaches discussed above. Two case study events (Section 4.2.4, p126) provide 

data. ‘Exploratory spatio-temporal visualisation’ and ‘visual analytics’ methods (G. 

Andrienko et al., 2010) provide several valuable computer-driven and, in some 

cases, GIScience-specific research techniques. These have been supplemented by 

Natural Language Processing pipelines (GATEcloud, AlchemyAPI and CLAVIN-rest, 

discussed in Chapter 4, p118), newly available ‘at Web scale’ (Berners-Lee, Hall, 

Hendler, O’Hara, et al., 2006), and able to operate on, text-mine and extract 

meaningful information from millions or even billions of records (Tablan et al., 
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2012). Labaree (2017) usefully summarises what case study and exploratory 

methodologies can (Table 3-1) and cannot (Table 3-2, p110) tell us.  

Table 3-1 – What case study and exploratory methodologies can tell us (after Labaree, 
2017; quoted in italics) 

Case study methodology Exploratory methodology 
Approach excels at bringing us to 
an understanding of a complex 
issue through detailed contextual 
analysis of a limited number of 
events or conditions and their 
relationships. 

A useful approach for gaining 
background information on a 
particular topic. 

A researcher using a case study 
design can apply a variety of 
methodologies and rely on a 
variety of sources to investigate a 
research problem. 

Exploratory research is flexible and 
can address research questions of 
all types (what, why, how). 

Can extend experience or add 
strength to what is already known 
through previous research. 

Provides an opportunity to define 
new terms and clarify existing 
concepts. 

Social scientists make wide use of 
this methodology to examine 
contemporary real-life situations 
and provide the basis for the 
application of concepts and 
theories. 

Exploratory research is often used 
to generate formal hypotheses and 
develop more precise research 
problems by identifying patterns or 
irregularities in data hitherto 
unsuspected. 

Can provide detailed descriptions 
of specific and rare cases. 

In the policy arena or applied to 
practice, exploratory studies help 
establish research priorities and 
where resources should be 
allocated. 

 

These summations are tabulated above and below, although it must be noted that 

Labaree did not juxtapose his conclusions in a comparative row/column-based table 

of this type, instead preferring bulleted lists of points. Strengths and weaknesses 

inherent in the two approaches from his original text have been italicised for 

emphasis. 
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Table 3-2 – What case study and exploratory methodologies cannot tell us (after Labaree, 
2017; quoted in italics) 

Case study methodology Exploratory methodology 
A single or small number of cases 
offers little basis for establishing 
reliability or to generalize the 
findings to a wider population of 
people, places, or things. 

Exploratory research generally 
utilizes small sample sizes and, 
thus, findings are typically not 
generalizable to the population at 
large. The availability of Big Data 
may well have changed this 
assumption. 

Intense exposure to the study of a 
case may bias a researcher's 
interpretation of the findings. 

The exploratory nature of the 
research inhibits an ability to make 
definitive conclusions about the 
findings. They provide insight but 
not definitive conclusions. 

Design does not facilitate 
assessment of cause and effect 
relationships. 

The research process underpinning 
exploratory studies is flexible but 
often unstructured, leading to only 
tentative results that have limited 
value to decision-makers. 

Vital information may be missing in 
any given case; this may make the 
case hard to interpret and add to 
difficulties in making generalisable 
conclusions. 

Design lacks rigorous standards 
applied to methods of data 
gathering and analysis because 
one of the areas for exploration 
could be to determine what 
method or methodologies could 
best fit the research problem. 
More systematic approaches to 
exploration help mitigate this 
problem. 

The case may not be representative 
or typical of the larger problem 
being investigated and, unless 
more cases are studied, it may be 
hard to know this. 

 

If the criteria for selecting a case is 
because it represents a very 
unusual or unique phenomenon or 
problem for study, then 
interpretation of the findings can 
only apply to that particular case. 
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Table 3-1 (p109) indicates that a hybrid case study/exploratory approach has many 

advantages, including the ability to understand complex issues in a flexible way, 

helping to clarify existing concepts and frame new directions for research. Where 

Labaree (2017) identifies weaknesses, these tend to be in terms of case study 

selection, unrepresentativeness (a definite possibility) and ‘small sample sizes’ (less 

relevant here as many millions of records have been sampled), all of which may 

limit the methodology’s ability to offer ‘definitive findings’. These observations 

match several of Tufekci's (2014) points above (Section 3.3, p102), as applied to the 

study of ‘social media big data’. An awareness of these potential shortcomings in 

the research methodology is acknowledged. As any deficiencies in the 

methodological approach may also stem from ethical concerns or practice these 

issues are discussed in the following section. 

3.4 Ethics 

None of the 2,436,167 social media users whose 8,196,380 messages have been 

analysed here gave explicit consent to take part in this research and contacting all 

of them to request their co-operation would be practically impossible. What ethical 

issues arise from the collection, download, storage and analysis of so many 

messages publicly posted by so many users of two leading OSN sites? Has a new 

paradigm (Kuhn, 1970) of implicit co-option and tacit co-operation in research been 

reached? 

Users who have ‘opted-in’ to, or failed to ‘opt-out’ of, public posting on OSNs are 

sometimes surprised by the amount of data deposited in the public domain and 

how these data are used. Tear & Southall (2019, in press) identify how ‘modern 

social media enables [sophisticated communications] at no upfront cost to its users, 

who have, thus far, made a […] bargain by imparting their own personal 

information for access to these platforms, accepting increasingly targeted 

advertising in exchange.’ This process of ‘datafication’, through which Web users 

accept and acknowledge that their data (and its metadata) have value, and use this 
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as a ‘currency’ in exchange for services, has also been noted by Van Dijck (2014). In 

the wake of Edward Snowden’s revelations on the extent to which government 

surveillance agencies make use of social media, telephony and other ‘digital traces’ 

of modern-day life (The Guardian, 2018) issues surrounding ‘datafication’, ‘dataism’ 

(a belief in objective, quantitative measurement and prediction from data) and 

perpetual state-organised ‘dataveillance’ have come to the fore. 

Van Dijck (2014, p206) has stated that ‘The popularization of datafication as a 

neutral paradigm, carried by a belief in dataism and supported by institutional 

guardians of trust’ raises several ‘precarious matters’ which are still to be 

addressed. These centre around society’s relationship with democracy and 

‘dataveillance’ by state actors but also require that ‘[academics take] responsibility 

for maintaining credibility of the [data] ecosystem as a whole.’ In exhibiting 

sometimes ‘unbridled enthusiasm’ for using the by-products of datafication in 

research, based on a generally misplaced epistemological belief in ‘objective 

quantified understanding’, Van Dijck (2014, p204) recommends that ‘To keep and 

maintain trust, Big Data researchers need to identify the partial perspectives from 

which data are analyzed; rather than maintaining claims to neutrality, they ought to 

account for the context in which data sets are generated and pair off quantitative 

methodologies with qualitative questions.’ This is the approach that has been 

adopted in this study which, against the complex multi-media backdrop of two 

major political campaigns, merges quantitative and numerical reporting with 

examination and identification of more qualitative expressions of place evident in 

social media messages and link shares. The research has, of course, been ethically 

reviewed (Appendix 4, p419) and a summary of this process, and issues highlighted 

by it, follows. 

In his email of 29/05/2015, reporting a ‘Favourable opinion with conditions’, the 

University of Portsmouth’s Geography Department Ethics Co-ordinator (Bray, 

personal communication, 2015), noted that this research project ‘is an unusual 
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study for which relatively little clear research ethics exists.’ This observation has 

been echoed in the literature. The University of Cardiff’s, Economic and Social 

Research Council (ESRC) funded, Social Data Science Laboratory (2016) has stated 

that ethics have become a particularly ‘salient’ feature of research using social 

media data as ‘The digital revolution has outpaced parallel developments in 

research governance and agreed good practice. Codes of ethical conduct that were 

written in the mid twentieth century are being relied upon to guide the collection, 

analysis and representation of digital data in the twenty-first century.’ 

Examples of ethical challenges abound. Swirsky, Hoop, & Labott (2014, p60) give 

examples in which ‘the investigator wonders whether the requirement for informed 

consent can be waived because viewing publicly accessible Facebook pages is akin 

to observing public behavior’ and conclude that this ‘may not be the case.’ Users, it 

is noted, ‘may feel that their Facebook page, even if publicly accessible, is still 

somewhat private.’ Moreno, Goniu, Moreno, & Diekema (2013, p708) consider 

several ethical dilemmas in ‘observational research, interactive research, and 

survey/interview research’, highlighting problems with ‘issues regarding privacy, 

consent, and confidentiality.’  

From a geographical perspective, there also appears to be a particularly strong 

desire amongst OSN users, identified by both academic (Barreneche & Wilken, 

2015; Cottrill, 2011) and non-academic contributors (Schwartz, 2013), to protect 

personal locational privacy. Utter dismay has accompanied several real or perceived 

breaches of locational trust. Cottrill (2011, p49), for example, describes the 

“Locationgate” scandal when, in ‘April of 2011, at Where 2.0 (a conference focusing 

in part on location-aware technology) [it was disclosed] that the Apple iPhone and 

3G iPad were recording the locations of the devices, unencrypted, to a hidden file.’ 

As a result, hardware manufacturers, Facebook, Twitter and other Web platforms 

such as eBay – which may once inadvertently have disseminated geospatial 

information recorded in the Exchangeable Image File (EXIF) metadata of publicly-
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posted digital images from users listing items for sale (Schwartz, 2013) – now place 

significant importance on locational ‘safeguarding’ (Lazer et al., 2009; Min & Kim, 

2015). 

Twitter’s Geo Guidelines for Developers (Twitter, 2014), for example, require that: 

• Users must opt-in to use the Tweeting with Location feature (turn location 

“on”). 

• Users must give explicit permission for their exact location to be displayed 

with their Tweets. 

• It must be clear to users what level of location information, if any, will be 

displayed in association with their Tweet. 

• Users should be able to turn on and off their location each time they 

compose a Tweet. 

Taking the above into account, none of the maps or charts presented in this thesis 

are at large enough scale to identify individual users’ locations or addresses. In 

software, however, it is perfectly possible to zoom in to specific coordinate-

geotagged Twitter tweets or Facebook posts, or to identify and map all of the 

locations from which any given user has deposited social media messages. While it 

is possible, it is unethical to report on the data in this way. Consequently, and in line 

with both the University of Portsmouth’s ethical review and general ‘good practice’ 

recommended in this research area (Williams, 2015), in this study: 

• Licensing restrictions imposed by Twitter, Facebook and DataSift (Appendix 

5, p424) are respected. 

• Research outputs (Chapter 5, p186) report at aggregate levels. 

• No quotes from identifiable social media users are used, unless those users 

are public figures (e.g., Obama, Salmond). 
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• No data gathered in the research are shared with others, except for project 

partners (e.g., by transmission to secure servers operated by the University 

of Sheffield’s GATEcloud.net service). 

• All data are always stored in secure, password-protected systems. 

The ethical approach adopted here does limit the presentation of results. Research 

outputs are based upon aggregated analyses of atomic data, and no individual 

messages (other than those posted by public figures such as electoral candidates or 

major celebrities) are reported. These recommendations, concepts and limitations 

surrounding Internet Mediated Research (IMR) were discussed at the University of 

Portsmouth’s Ethics and Governance conference (Suguira, Carpenter, Evans, & 

Parry, 2016). At this event, the outgoing chair of the University’s Ethics Committee, 

David Carpenter, self-deprecatingly asked whether IMR prompts ‘the end of 

research ethics as we know it?’ Answering his own question, Carpenter’s assertion 

that a ‘paradigm shift’ has occurred in the face of new-found abilities to access and 

interrogate social media Big Data has been affirmed extensively elsewhere in the 

literature (Borah, 2017; R. M. Chang et al., 2014; Deluliis, 2015; Fuchs, 2017a; S. Li 

et al., 2016; Rowe, 2015; Wei, 2013; Zelenkauskaite & Bucy, 2016). 

Ethical considerations inevitably influence the conduct of research and the 

presentation of results. Fuchs (2017, p43) has warned that analytical positivism in 

Big Data research frequently ‘results in often very superficial analyses that highlight 

major topics, users or social relations in large amounts of data gathered from 

Twitter, Facebook and other social media platforms.’ Fuchs (2017a) has stated that 

‘the trouble’ with Big Data analytics is ‘that it often does not connect statistical and 

computational research results to a broader analysis of human meanings, 

interpretations, experiences, attitudes, moral values, ethical dilemmas, uses, 

contradictions and macro-sociological implications of social media.’ This, he 

suggests, requires a rethink ‘about theoretical (ontological), methodological 

(epistemological) and ethical dimensions of an alternative paradigm.’ 
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The critical approach which Fuchs (2017a) advocates is designed not just to 

understand ‘what people do on the Internet but also why they do it’, ideally by 

incorporating ‘traditional sociological methods’ including interviews, observation, 

surveys, statistical analysis of secondary data and so forth. Doing so, while 

admirable, requires larger budgets, more time and the sort of co-option onto 

survey panels which has not been attempted here, and remains an area for future 

research (Section 7.5, p299). Fusion of OSN data with other secondary sources of 

statistical data, including US and UK Census data has, however, been conducted and 

is reported upon as an additional finding in Section 6.4.4 (p262). Wherever possible 

a digital positivist methodology is avoided in this research which considers content, 

and context, in preference to (meta)data alone. The profound and limiting 

epistemological, methodological and ethical issues which frame the research, and 

have been outlined above, are returned to in the concluding chapter (Section 7.4, 

p297) of this thesis. 

3.5 Summary 

In the Internet era politics, and to a degree life itself, is arguably becoming 

increasingly ‘deterritorialized’ (after Deleuze & Guattari, 1972 reprinted in 

translation 2004; cf. Ó Tuathail, 1998), while at elections political outcomes are still 

based around geographically bound constituencies (Agnew, 2013; Elden, 2005). As 

Johnston has noted in a review (2009, p511) of Rehfield's (2005) work The Concept 

of Constituency ‘For electoral and political geographers in almost all of the English-

speaking world, the role of territorially-defined constituencies in legislative 

elections is virtually taken-for-granted.’ This territorial definition, or ‘boundedness’ 

of space, has held a long-running fascination for geographers (Cox, 1969; Giddens, 

1985) and has continuing relevance during a period when candidates, political 

parties, companies and state-sponsored actors have attempted to influence opinion 

online, particularly in the small and (now easily) targetable number of 
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constituencies or voting districts which often determine political outcomes in 

Western democracies. 

The recent exponential growth in OSNs, coupled with improved access to OSN Big 

Data and developments in computing technology, have enabled new forms of social 

science research, including the analysis of geographicality in politicised social media 

discourse set out in this thesis. Vergeer (2012, p12) has suggested that where 

theory-driven, smaller-scale socio-political and larger-scale information science 

approaches intersect is ‘where scientific innovations will most likely surface.’ The 

following chapter details methods used in this study to innovate in this way. Results 

from this work are presented in Chapter 5 (p186) with additional findings from the 

research given in Chapter 6 (p227). 
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4 RESEARCH METHODS 

4.1 Introduction 

This chapter describes the research methods employed to acquire (using several 

randomised 1-in-n samples), store, augment, query, tabulate, analyse and visualise 

~8 million OSN interactions recorded during the 2012 US Presidential Election and 

the 2014 Scottish Independence Referendum campaigns. The chapter, after Kallet 

(2004), describes, a) what was done, b) how it was done, c) justifies the 

experimental design, and; d) explains how results were analysed. 

Five main sections detail the methods adopted in this research, describing: 

1. Data subjects – Section 4.2 (119) describes the material used in this 

research, consisting of data subjects in the form of digital social media 

messages (or ‘interactions’) and accompanying metadata created by ~2.4m 

users of Twitter and Facebook during two case study events; the 2012 US 

Presidential Election and the 2014 Scottish Independence Referendum. 

2. Data preparations – Section 4.3 (p135) describes the preparations required 

to render the files of collected social media interaction data usable, through 

storage (and the testing of different storage technologies) allowing for the 

efficient querying and interrogation of the data. The several file formats and 

database management systems used are introduced. 

3. Data procedures – Section 4.4 (p147) describes the procedures adopted to 

augment the collected data using three Natural Language Processing (NLP) 

systems, each of which was used to text-mine interaction message text and, 

in one case, linked/shared URL content deposited alongside message text 

for place-based (toponymic) geographical references. 

4. Data analysis – Section 4.5 (p158) describes the set of methods used to 

analyse the data subjects, including data query, tabulation and analysis, data 

visualisation and statistical tests. The software systems used to perform 
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these tasks are introduced and, through reference to Appendices, the 

computing environment used to perform the analysis is described. 

5. Data measurements – Section 4.6 (p164) describes the development of a 

measurement and scoring system used here to categorise baseline levels of 

‘geographicality’ in social media metadata. Geographicality Scores, based on 

the presence of identified Potential Geographic Information (PGI) in 

interaction metadata, aid cross-comparison when presenting results. 

The various, largely technical, methods detailed in this chapter are used to provide 

answers to the three research questions outlined in Section 1.7 (p34); these results 

are presented in the following Chapter 5 (p186) with additional relevant findings 

detailed and discussed in Chapter 6 (p227). 

4.2 Data subjects 

The subjects of this research are politically discursive social media messages; 

8,196,380 OSN interactions created by 2,436,167 individual users of Twitter and 

Facebook in a roughly 90:10 ratio during the campaigns leading up to the 2012 US 

Presidential Election (US2012) and the 2014 Scottish Independence Referendum 

(SCOT2014). This section outlines the characteristics of social media data (Section 

4.2.1, p119) and several of the methods and technologies used in Social Network 

Analysis (SNA; Section 4.2.2, p121) before detailing the technical ‘proof of concept’ 

exercise undertaken first in this research programme (Section 4.2.3, p123). The 

conduct of this test, along with outputs and analyses derived from it (given in 

Appendix 6, p427), led to the selection of case studies (Section 4.2.4, p126) and the 

data acquisition phase (Section 4.2.5, p134) of this research. 

4.2.1 Characteristics of social media data 

It is generally difficult to consume entire streams of social media data; the 

characteristic 3 Vs of ‘volume, velocity and variety’ (Laney, 2001) make ingestion 
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and storage of real-time feeds problematic without high-end IT infrastructures. 

Consequently, and because many OSN sites are global in scope, subsetting is 

common prior to analysis. The subsetting of social media data may be achieved 

temporally or by filtering against available text, location, language or metadata 

fields (e.g., image or video descriptions). Filtering may also exploit characteristics of 

the ‘social graph’ at the heart of many OSN sites. 

 

Figure 4-1 – Simple representation of a Social Graph: 6 users A-F (‘nodes’) are connected to 
one another (by ‘links’) with node-size proportional to ‘out-degree’ (number of outbound 

links) 

Figure 4-1 shows a conceptualised set of inter-relationships between imaginary 

users (e.g., A knows B and C; B:A,E,F; C:B; D:A,C; E:A,B,C,D,F; F:A) rendered as a 

spatialised graph in the Gephi software package (Bastian, Heymann, & Jacomy, 

2009). This type of visualisation is based upon Euler’s puzzle regarding possible 

walking routes over the seven bridges of Königsberg (Gribkovskaia, Halskau, & 

Laporte, 2007; J. R. Newman, 1953; Shields, 2012) which led to the foundation of 
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graph theory in mathematics (I. Robinson, Webber, & Eifrem, 2015). Interactions 

between users form the mainstay of the workings of all OSN sites; e.g., on Facebook 

you find friends, on LinkedIn you connect to fellow professionals, on Twitter you 

follow or mention other users and may retweet their messages.  

In the current research, subsetting has been achieved through temporal cut-offs 

and text-matching against key terms, with some additional filtering on language. In 

one case (US2012; Section 4.2.4.1, p126) the scale of the event and the sampling 

strategy adopted precluded the collection of an entire social graph. In the other 

(SCOT2014; Section 4.2.4.2, p129), a much larger data set and complete graph 

was collected for the selected key terms. These data acquisition events are 

described later, following a brief description of how social media data from Twitter 

and Facebook may be stored and analysed. The introductory overview given in 

Section 4.2.2, below, is expanded upon in subsequent sections of this chapter. 

4.2.2 Social Network Analysis (SNA) 

Social Network Analysis (SNA) primarily focuses on understanding interaction 

relationships in social media data. Computerised systems are required, commonly 

including: 

• NoSQL and/or SQL relational databases – Social media data are typically 

‘semi-structured’ comprising variable length sets of key/value pairs 

frequently with nesting and arrays held in JSON format (ECMA International, 

2013, 2017). NoSQL (not only Structured Query Language) databases (e.g., 

Apache Drill running on Hadoop, MongoDB) are well-suited to ‘ingesting’ 

such data, although conventional relational databases (e.g., MySQL, Oracle, 

PostgreSQL) now offer significantly-improved JSON storage and query 

facilities, using familiar SQL syntax, and are perfectly well-suited to querying 

the generally more-structured elements, e.g., username, user home page, 

creation date/time etc. held in OSN metadata. File formats encountered and 
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database management systems used in this research are detailed in Section 

4.3 (p135). 

• Natural Language Processing (NLP) systems – Most non-audio/visual social 

media data is comprised of free-form ‘unstructured’ text. As data volumes 

preclude individual examination of text, computerised systems must be 

used. Social media data, and Twitter tweets especially, often feature terse 

and ungrammatical language (Batista & Figueira, 2017) making Information 

Extraction (IE) and Named Entity Recognition (NER) difficult. The University 

of Sheffield’s open-source GATE and GATEcloud instances of TwitIE 

(Maynard, Roberts, Greenwood, Rout, & Bontcheva, 2017) perform 

particularly well against Twitter data. Other software or systems (e.g., 

AlchemyAPI, Lexalytics, R’s Quanteda or TextMining packages) may be 

better-suited to longer text or to specific tasks (e.g., NER of shared links). 

The NLP systems used in this research are detailed in Section 4.4, (p147). 

• Graph databases and visualisation systems – The ‘social graph’ may be 

stored and analysed in graph databases (e.g., Neo4j, Oracle Spatial & Graph) 

and visualised using specialist software (e.g., Gephi, Pajek). Social media 

users, in these notations, are termed ‘nodes’ and their inter-relationships 

‘links’ or ‘vertices’. Attributes, e.g., liked, following, followed, mentioned, 

retweeted are attached to the vertices allowing extended traversal through 

graph networks. LinkedIn, the leading OSN aimed at professionals, runs on a 

custom-built graph database (Clemm, 2015) and is particularly good at 

finding Friend of a Friend (FOAF) and FOAF-FOAF-FOAF relationships out to 

several degrees. Likes on Facebook, together with retweets and mentions 

on Twitter, are commonly studied in the SNA literature (Scott, 2017). The 

range of systems and specialist software (below) used in this research are 

detailed in Section 4.5 (p158). 

• Specialist software – An extensive array of open-source and commercial 

products are available, running either locally on desktop or server class 
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hardware or in the Cloud, to perform sentiment analysis, machine learning, 

image content classification, geographical visualisation and countless other 

analytical tasks. A comprehensive listing of the many methods and 

technologies employed in SNA is outside the scope of this thesis, but is 

covered in considerable depth by Scott (2017) and Russell (2011). 

Massive usage growth in highly participatory online platforms and mobile-enabled 

applications is the defining characteristic of the modern-day Web as the ‘underlying 

dynamics of code and networking […have enabled…] computer corporations [to 

take] over the media’s natural field or, at least, [diverge] into new forms of 

corporate consumer business’ (Allen, 2017, p177). Many of us now voluntarily 

create content online, either personally or professionally, and accept that it is 

stored digitally in corporate databases some of which allow access to publicly-

posted material (Van Dijck, 2014). While content platforms have increasingly 

‘locked down’ access to social graph relationships (Hogan, 2018) and more 

sophisticated privacy settings remove much data from public view, social media 

data (from Twitter, especially) are now readily accessible, e.g., using Social Feed 

Manager (George Washington University Libraries, 2016), and provide a fascinating 

source of research material for social and information scientists. The technical 

‘proof of concept’ exercise undertaken first in this programme, designed to trial 

social media data collection and provide material for test analysis, is described 

below. Results from this exercise helped to inform subsequent choice of case 

studies (Section 4.2.4, p126) and methods used in this research.  

4.2.3 Technical proof of concept 

On 6 May 2012, a technical proof of concept exercise was undertaken to record 

OSN interactions made during the final stages of the 2012 French Presidential 

Election. France uses a ‘two-round runoff’ voting system to elect the President of 

the Republic and members of the National Assembly. In 2012, ten Presidential 

candidates, including the incumbent Nicolas Sarkozy (Union for a Popular 
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Movement), stood in the first round. Sarkozy and his Socialist opponent, François 

Hollande, collected the most votes (9,753,629 and 10,272,705 respectively) in the 

first-round of voting held on 22 April 2012, and proceeded to the second-round 

runoff contest set for 6 May 2012. The outcome of this election was hotly 

anticipated as the result in the first-round had been so close, with Sarkozy winning 

27.18% of total votes cast and Hollande just edging him with 28.63%.  

 

Figure 4-2 – Comparative size of Twitter’s Streaming API (1% sample), Decahose (10% 
sample) and the full Firehose (100% of tweets) 

Around three hours before the result was due to be announced, test collection of 

social media data commenced using the DataSift platform, a content aggregation 

system capable of accessing Twitter’s ‘Firehose’ (Figure 4-2). Most studies in the 

published academic literature use Twitter’s ‘Streaming API’ to download tweets, a 

facility provided by Twitter since 2006 (Stone, 2006). This Application Programming 

Interface (API) allows developers to authenticate against Twitter’s servers (Twitter, 

2013b, 2017) and stream, in real time, a 1% sample of the full ‘Firehose’ of tweets, 

nowadays equating to ~500 million tweets/day (Worldometers, 2018). As it is free 

to use and data volumes are manageable the Streaming API has been used 
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extensively in academic research (Deitrick & Hu, 2013; Elisa Omodei, Manlio De 

Domenico, & Alex Arenas, 2015; Kwon, Wang, Raymond, & Xu, 2015; Wachowicz & 

Liu, 2016). While the 1% sample provided by the Streaming API is thought to be 

representative of the full Firehose of tweets (Morstatter, Pfeffer, Liu, & Carley, 

2013) access to the 10% Decahose or 100% Firehose is typically ‘very hard to come 

by and potentially very expensive to realistically consume’ (Twitter, 2013a). 

Consequently, many studies using the Streaming API have collected data over 

substantial time periods measured in months or, in some cases, years (S. Gray et al., 

2015). This is especially the case where researchers filter on rarely used keyword 

terms or on the presence of certain rarely-populated interaction metadata, e.g., 

‘geotagged’ coordinates.  

In order to test the collection of a sufficient number of social media interactions 

quickly DataSift's (2013c) content aggregation service was used. In 2012 DataSift 

offered new users a limited free trial of its services, able to access both the full 

Firehose of Twitter tweets and messages posted on several other OSNs, including 

Facebook. DataSift managed upstream technical integration with platform 

operators, a useful feature as APIs change frequently (Claburn, 2018), and allowed 

ongoing ‘pay as you go’ access to social media data through its own easily 

understandable and programmable Curated Stream Definition Language, CSDL 

(DataSift, 2013a). As a test, a real-time recording was created on the DataSift 

platform using the CSDL statement below: 

interaction.content CONTAINS_ANY "french election, 
presidential election, sarkozy, hollande" 

The CSDL was designed to record OSN interactions with message text containing 

any of the case-insensitive phrases (e.g., ‘french election’) shown within double 

quotes above. The recording started on Sunday, 6 May 2012 at 16:17:47 and was 

stopped at 17:31:03 on the same day, some 1 hour, 13 minutes and 16 seconds 

later. This trial exercise, outputs and analyses of which are presented in Appendix 6 

(p427), proved – through the collection of ~50,000 records in under an hour and a 



Geotagging matters? 

126 

 

quarter during the final stages of the 2012 French Presidential Election – that OSN 

interactions could be filtered, recorded, saved and downloaded using the DataSift 

platform at speed, in large volume and with controllable costs. Hollande was 

declared winner of the contest to become President of the French Republic, with 

51.64% of the vote, at 8pm on 6 May 2012, some 2 hours 30 minutes after test data 

collection ceased. 

4.2.4 Choice of case studies 

Much larger and longer-running OSN recordings were required to test the 

Geographicality Assumption against the research questions set out earlier in this 

thesis (Section 1.7, p34). Two, then forthcoming, electoral events were selected as 

case studies for further investigation; these are detailed below. 

4.2.4.1 Case study #1: 2012 US Presidential Election 

During the two-month run up to the US Presidential Election of 6 November 2012, 

1,661,402 Twitter tweets and 57,265 Facebook posts were sampled from 

contemporaneous OSN communications. Three sample sets (‘Streams’ in DataSift 

terminology) from Twitter and Facebook were recorded using a range of identical 

text search terms and controlling for explicit presence/absence of geographical 

coordinates, extent (country) and/or language. The interactions were filtered 

(Appendix A7.2, p432) on any case-insensitive words or phrases matching those 

illustrated in Figure 4-3 (p127), which shows the contribution of each search term 

to the sample, noting that some terms (e.g., ‘US President’ and ‘Obama’) may have 

appeared multiple times within message text. When sampled, using a 1-in-n 

strategy to record only a percentage of all Twitter tweets or retweets from the 

Firehose, DataSift’s CSDL construct, interaction.sample, was used. This 

generates a ‘floating-point random number between 0 and 100’ for each 

interaction enabling control of sample size (DataSift, 2018a). 
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Figure 4-3 – US2012: Search terms used, numeric and percentage contribution to OSN 
interactions sampled (n=2,676,331 total mentions of search terms in text) 

Despite filtering on 15 search terms the top 3 terms account for 78.97% of 

interactions sampled in the data set. Filtering has selected for inclusion mainly on 

candidate surname, forename or a combination of the two. In both political events 

(see also Figure 4-6, p131), the top 2 terms usefully, and reasonably evenly, select 

interactions for the major protagonists in both contests although, in retrospect, the 

addition of another two single-word terms (‘President’ for US2012 and 

‘Referendum’ for SCOT2014) may have yielded somewhat differently-shaped data 

sets. As Tufekci (2014) has noted, choice of filter terms is clearly critical when 

abstracting OSN content (Section 3.2, p96). In this research, however, the two data 

sets are considered to demonstrate both a reasonable split between OSN sources 

and subtypes (Facebook, Twitter tweets, Twitter retweets) and a balance between 

opposing sides of the political debate in each election under investigation.  

To collect many spatially referenced Twitter tweets or Facebook posts in 2012, and 

not knowing at the outset how many records (at what cost) would be captured, a 1 

in 5 sample of explicitly geotagged content was recorded, along with a 1 in 50 

sample unconstrained by explicit presence of geographical coordinates. This second 
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Stream was required to determine the overall proportion of OSN interactions 

containing coordinate-geotags and/or toponymic references. A third 1 in 50 sample 

considered posts in Spanish as the Hispanic population was thought at the time to 

comprise a key voting bloc in the election (Choy, Cheong, Laik, & Shung, 2012; 

Klofstad & Bishin, 2014). 

Table 4-1 – US2012: Summary of recorded OSN interactions (n=1,718,667) 

Details US2012_GEO US2012_NON_GEO US2012_NON_GEO_HISP 
Start Date 04/09/2012 06/09/2012 05/10/2012 
End Date 06/11/2012 06/11/2012 06/11/2012 
Duration 63 days 61 days 32 days 
Sample 1 in 5 1 in 50 1 in 50 
Coverage Worldwide Worldwide United States 
Language English English Spanish 
Geo Required? Yes No No 
Geotagged 146,424 22,424 122 
Non-geotagged 0 1,538,543 11,154 
Total 146,424 1,560,967 11,276 
% Geotagged 100% 1.44% 1.08% 

 

The three US2012 Streams (Table 4-1) were recorded, stored and downloaded 

from DataSift’s servers. The data set consists of 1,718,667 rows across three files 

each with up to 146 fields (Table 4-3, p136). The source files in both Comma 

Separated Values (CSV) and JavaScript Object Notation (JSON) formats were loaded 

into the Oracle 12c RDBMS (Section 4.3.1.3, p145). Altogether across the US2012 

data set 168,970 Twitter tweet and retweet interactions, and no Facebook posts, 

were coordinate-geotagged; these geotagged records could easily be mapped 

(Figure 4-4, p129) using Tableau software (Section 4.5.2, p161). Most coordinate-

geotagged interactions came, not unsurprisingly, from the US2012_GEO Stream 

which explicitly required coordinates to be present in metadata (Appendix A7.2.1, 

p433). 
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Figure 4-4 – US2012: Worldwide distribution of coordinate-geotagged Twitter tweets (dark 
blue) and retweets (lighter blue) 

In this Stream 99.94% of records held a valid Latitude and Longitude coordinate 

pair, with 85 recording useless 0/0 coordinates. In those Streams without an explicit 

geographical filter only ~1% of records were geotagged. If the sampled data were 

grossed up ~750,000 records (5 * ~150,000) out of ~75 million (50 * ~1.5 million) 

filtered on the search terms used, i.e. ~1% (again in line with Leetaru et al., 2013), 

could easily be mapped using coordinate-geotags. 

4.2.4.2 Case study #2: 2014 Scottish Independence Referendum 

The necessity for a second case study was prompted by early analysis of data from 

the first. The US2012 data set consisted of three sampled Streams in 1:5 (one 

Stream) and 1:50 ratios (two Streams). Sampling was used to restrict data volume 

and control costs (Section 4.2.5, p134) but also resulted in an ‘incomplete’ data set 

where the full network graph of tweeting, mentioning and retweeting could not be 

examined. This can be illustrated visually (Figure 4-5, p130) and by running 

modularity class calculations (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) 

using the open-source Gephi graph analysis package (Bastian et al., 2009).  
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Figure 4-5 – US2012: Spatialised network graph of ‘Twitter mentions’ relationships 

Figure 4-5 shows the ‘Twitter mentions’ network in the US2012 data set, 

visualising 314,427 ‘nodes’ (Twitter users) mentioning other Twitter users in their 

tweets to form 330,164 connections, or ‘edges’, linking users. The chart has been 

produced using Gephi’s OpenOrd plugin (S. Martin, Brown, Klavans, & Boyack, 

2011); nodes have been coloured by modularity class, a calculation which 

‘measures how well a network decomposes into modular communities’ (Gephi, 

2018b), a higher score indicating a more sophisticated community structure. While 

the software does successfully identify 73,799 distinct communities in the data set, 

the visualisation (and modularity class score of 0.792) also shows that many nodes 

(outlying pale dots in the chart) are isolated, since not all Twitter users mentioned 

were sampled. For this reason, and to provide further opportunities for analysis and 
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cross-comparison between events, a second real-time recording of OSN 

interactions during the much longer run up to the 2014 Scottish Independence 

Referendum was started on 18 September 2013, exactly one year before the vote 

was due to take place. 

Scotland, with a much smaller population (~5 million) than the US (~320 million), 

was thought unlikely to generate the sorts of OSN data volumes a 1:1 sampled US 

recording would have created.  

 

Figure 4-6 – SCOT2014: Search terms used, numeric and percentage contribution to OSN 
interactions sampled (n=7,174,270 total mentions of search terms in text) 
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Interactions were filtered (Appendix A7.3, p435) on any case-insensitive words or 

phrases matching those illustrated in Figure 4-6 (p131), which also shows the 

contribution of each search term to the sample; again noting that some terms will 

have appeared multiple times within message text. Deliberate misspellings 

(‘independance’ etc.) were incorporated in the CSDL design as misspellings are a 

common feature of OSN communications (Deitrick & Hu, 2013; Maruyama, 

Robertson, & Douglas, 2014; Russell, 2011). Despite Scotland’s small population size 

worldwide interest in the outcome of the Referendum, coupled with the longer-

running nature of the recording, eventually resulted in the collection of ~6.5 million 

OSN interactions. The top 3 of 27 search terms account for 63.25% of interactions 

sampled in the data set. Filtering has selected for inclusion on a mix of First Minister 

(and Vote Yes leader) Alex Salmond’s surname, the campaign slogan (‘Better 

Together’) of the Vote No (remain united) coalition, where no one political figure 

spearheaded the campaign, and the abbreviation ‘SNP’ (Scottish Nationalist Party), 

the name of the pro-independence party in Scotland. As noted earlier (Section 

4.2.4.1, p126), the top 2 terms usefully, and reasonably evenly, select interactions 

for the major protagonists in the 2014 Scottish Independence Referendum and are 

thought to offer a balance of messages for inclusion in the sample for both 

opposing sides of the political debate. 

Table 4-2 – SCOT2014: Summary of recorded OSN interactions (n=6,477,713)  

Details SCOT2014 
Start Date 18/09/2013 
End Date 30/09/2014 
Duration 378 days 
Sample All 
Coverage Worldwide 
Language English 
Geo Required? No 
Geotagged 187,975 
Non-geotagged 6,289,738 
Total 6,477,713 
% Geotagged 2.90% 
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The data set is summarised in Table 4-2 (p132) and consists of 6,477,713 records 

with 411 fields, many more than had been recorded in the US2012 data set two 

years earlier. 

 

Figure 4-7 – SCOT2014: Worldwide distribution of coordinate-geotagged Facebook posts 
(orange), Twitter tweets (dark blue) and retweets (lighter blue) 

Downloadable from DataSift, again in both CSV and JSON formats, output files 

(Table 4-3, p136) were again loaded into the Oracle 12c RDBMS (Section 4.3.1.3, 

p145). Altogether across the SCOT2014 data set 187,975 records, a mixture of 

1,231 Facebook posts, 92,437 Twitter tweets and 94,307 retweets were coordinate-

geotagged; these could easily be mapped (Figure 4-7) using Tableau data 

visualisation software (Section 4.5.2, p161) or a GIS. At 2.90% the SCOT2014 

coordinate-geotagging rate (Table 4-2, p132) was somewhat higher than the overall 

percentage (0.92%) found in the US2012 data set (Table 4-1, p128), primarily due 

to a large number of coordinate-geotagged retweets. However, the figure is still 

broadly in line with earlier findings (Section 4.2.3, p123; Section 4.2.4.1, p126; 

Leetaru et al., 2013) reporting low geotagging rates. A more detailed description of 

geotagging rates by OSN source and subtype is given in Table 4-8 (p170) later in this 

chapter. 
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4.2.5 Data acquisition 

Two distinct phases of data acquisition in 2012 and 2013-2014 yielded a total of 

8,196,437 politically discursive OSN interactions. Data costs totalled $4,968  or 

around £4,000, tending to echo Zelenkauskaite & Bucy's (2016) assertion that ‘both 

the cost and control of social media data limit opportunities for research.’ Costs 

associated with the 2012 US Presidential Election may be considered reasonable 

value, at $1,728 (around £1,400) for ~1.7m records, or 0.1 US cents per record. The 

longer-running 2014 Scottish Independence Referendum data cost around twice 

that amount but yielded nearly four times as many records, at 0.05 US cents per 

record, including a full set of social network relationships for the phrases used in 

the sample design. Scottish interactions were cheaper to acquire as DataSift 

charges are largely based on the complexity of the CSDL used, this being more 

complex during the US2012 data collection exercise (Appendix 7, p432). By the 

standards of much conventional academic or commercial market research, 

however, these costs are remarkably low for the number of ‘responses’ received. 

Overall, the two case study data sets are unique: 

• Twitter’s full ‘Firehose’ was used for data acquisition, filtered and sampled 

using DataSift technologies, rather than the free and more commonly-used 

1% Streaming API. 

• Around 10% of the OSN records sampled came from Facebook, most of 

which were recorded during the 2014 Scottish Independence Referendum. 

Many studies examine data from only one OSN source; having two enables 

comparison between posting characteristics observed on both. 

As the large OSN operators tighten their data access policies in response to user 

privacy concerns (Hogan, 2018), commercial considerations (Hern, 2014) and 

mounting regulatory pressures (McKinnon & Seetharaman, 2018) it is possible that 

accessing such data sets in the future may become increasingly difficult. 
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4.3 Data preparations 

The previous section has detailed the nature and acquisition of the data subjects; a 

large set of ~8 million social media interactions in digital form. This section details 

the procedures adopted and systems used to store files of interaction data acquired 

from DataSift. Without data storage (Section 4.3.1) in a data management system 

offering advanced querying and software integration capabilities no further 

processing or interrogation of data would have been possible. 

4.3.1 Data storage 

In 1970, Codd (p377) stated that ‘Future users of large data banks must be 

protected from having to know how the data is organized in the machine’ 

describing a relational framework designed to provide ‘the independence of 

application programs and terminal activities from growth in data types and changes 

in data representation.' Although well aware of the potential for ‘natural growth in 

the types of stored information’ Codd and other early designers of RDBMS software 

would probably not have anticipated the recent step-change in volumes of stored 

data and diversity of data types. Data in two commonly-used text interchange 

formats, CSV and JSON (ECMA International, 2013, 2017), downloaded in files from 

DataSift’s servers (Section 4.2.4, p126) or transmitted in streams by Web-based 

APIs (Section 4.4, p147), have been accessed and stored in this research. 

Surprisingly, given the long-standing ubiquity of CSV files in Extract, Transform and 

Load (ETL) operations, early attempts to verifiably load large numbers of OSN 

interactions in this format into several data management systems proved difficult. 

Importing JSON files or ‘ingesting’ streaming JSON data into these systems also 

proved challenging in many instances and impossible in one (Section 4.3.1.2, p140). 

Table 4-3 (p136) shows the file names, each available in CSV and JSON variants, 

record counts and file sizes of data downloaded from DataSift during the data 

acquisition phase of this project (Section 4.2.5, 134).  
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Table 4-3 – File listings, record counts and file sizes for CSV and JSON formatted data 
downloaded from DataSift 

Event Files (.csv and .json) Records CSV Size JSON Size 
US2012 us_2012_geo 

us_2012_non_geo 
us_2012_non_geo_hisp 

146,424 
1,560,967 

11,276 

178.69MB 
2,385.72MB 

17.03MB 

264.41MB 
2,879.62MB 

20.77MB 
Subtotal 1,718,667 2,581.44MB 3,164.80MB 

SCOT2014 part-r-00000 
part-r-00001 
part-r-00002 

2,159,069 
2,158,686 
2,160,015 

7,058.96MB 
7,056.14MB 
7,058.37MB 

6,661.80MB 
6,660.25MB 
6,662.54MB 

Subtotal 6,477,770 21,173.47MB 19,984.59MB 
TOTAL  8,196,437 23,754.91MB 23,149.39MB 

 

Altogether, 8,196,437 records had to be stored in a database management system 

capable of importing 23.75GB of file input held in CSV and/or 23.15GB held in JSON 

format. Neither file format would load straightforwardly and the storage of JSON 

formatted data, discussed below, proved particularly taxing. 

4.3.1.1 JSON 

Most OSN interactions and much other data returned by Representational State 

Transfer (RESTful) APIs such as the GATEcloud.net, AlchemyAPI and CLAVIN-rest 

systems used for data augmentation in this research (Section 4.4, p147) are stored 

or exchanged in one of the rapidly evolving ‘interchange languages’ of the Web 

(Decker et al., 2000); either Extensible Markup Language (XML) or, more recently, 

JavaScript Object Notation (JSON). The latter is ‘a lightweight, text-based, language-

independent data interchange format’ that ‘facilitates structured data interchange 

through a syntax of braces, brackets, colons, and commas’ (ECMA International, 

2013, ppI-II). JSON can represent ‘objects and arrays [which] nest [allowing] trees 

and other complex data structures [to] be represented’ (ECMA International, 2013, 

pII). 

The JSON data interchange format has been widely adopted by major OSN platform 

operators including Twitter (2013b) and Facebook (2013) and may be illustrated 

(Figure 4-8, p137 and Figure 4-9, p139) using the on-screen and raw JSON data 
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representations of a tweet downloaded from DataSift sent from the Twitter 

account of Presidential Candidate Barack Obama on 5 November 2012 by his 

campaign staff, recorded in the US2012 data set. 

 

Figure 4-8 – On-screen graphical representation of Presidential Candidate Barack Obama’s 
tweet created on 05/11/2012 (from the raw JSON shown in Figure 4-9) 

On Twitter, users see Obama’s tweet as it appears in Figure 4-8, graphically 

rendered and simply laid out. In JSON, used to record and share Twitter tweets and 

many other OSN interactions, the corresponding raw data (Figure 4-9, below) are 

represented by a sequence of Unicode code points, certain characters (e.g., the 

solidus character or forward slash ‘/’) are escaped and file encoding is in UTF-8 

(Yergeau, 2003). The number of ‘key/value pairs’, broadly analogous to ‘fields’ or 

‘columns’ in tabular database systems, degree of nesting and the length of arrays 

varies from record to record. 

{ 
 "interaction": { 
  "author": { 
   "avatar": 
"http:\/\/a0.twimg.com\/profile_images\/2764236884\/901
02995f6e328d7f90c43c8b337a0c7_normal.png", 
   "id": 813286, 
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   "link": "http:\/\/twitter.com\/BarackObama", 
   "name": "Barack Obama", 
   "username": "BarackObama" 
  }, 
  "content": "Happening now: President Obama speaks in 
Ohio about the choice in this election. RT so your 
friends can watch, too. http:\/\/t.co\/d42qgdn8", 
  "created_at": "Mon, 05 Nov 2012 21:39:41 +0000", 
  "id": "1e227914e2f4ac80e0740cf699462aae", 
  "link": 
"http:\/\/twitter.com\/BarackObama\/statuses\/265569098
132516864", 
  "schema": { 
   "version": 3 
  }, 
  "source": "web", 
  "tags": ["Democratic Party", "Neutral", "Barack 
Obama"], 
  "type": "twitter" 
 }, 
 "klout": { 
  "score": 98 
 }, 
 "language": { 
  "confidence": 100, 
  "tag": "en" 
 }, 
 "links": { 
  "created_at": ["Mon, 05 Nov 2012 03:10:59 +0000"], 
  "retweet_count": [0], 
  "title": ["Watch live: Barack Obama on the campaign 
trail \u2014 Barack Obama"], 
  "url": ["http:\/\/www.barackobama.com\/live"] 
 }, 
 "salience": { 
  "content": { 
   "sentiment": 0 
  } 
 }, 
 "trends": { 
  "content": ["ohio", "can"], 
  "source": ["twitter"], 
  "type": ["Canada", "daily"] 
 }, 
 "twitter": { 
  "created_at": "Mon, 05 Nov 2012 21:39:41 +0000", 
  "domains": ["OFA.BO"], 
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  "id": "265569098132516864", 
  "links": ["http:\/\/OFA.BO\/PfvCKP"], 
  "source": "web", 
  "text": "Happening now: President Obama speaks in 
Ohio about the choice in this election. RT so your 
friends can watch, too. http:\/\/t.co\/d42qgdn8", 
  "user": { 
   "created_at": "Mon, 05 Mar 2007 22:08:25 +0000", 
   "description": "This account is run by #Obama2012 
campaign staff. Tweets from the President are signed -
bo.", 
   "followers_count": 21753954, 
   "friends_count": 670840, 
   "id": 813286, 
   "id_str": "813286", 
   "lang": "en", 
   "listed_count": 179596, 
   "location": "Washington, DC", 
   "name": "Barack Obama", 
   "screen_name": "BarackObama", 
   "statuses_count": 7779, 
   "time_zone": "Eastern Time (US & Canada)", 
   "url": "http:\/\/www.barackobama.com", 
   "utc_offset": -18000, 
   "verified": true 
  } 
 } 
} 

Figure 4-9 – A JSON formatted Twitter tweet sent from the account of Presidential 
Candidate Barack Obama and created on 05/11/2012 

Around 150,000 records containing Latitude and Longitude coordinates resulted 

from sampling during the run-up to the 2012 US Presidential Election. These 

records, and other geotagged interactions from the various Streams recorded in 

2012 and 2013-2014 (Appendix 7, p432), hold an additional geo key/value pair 

nested within the interaction key which, in JSON, takes the form: 

"geo":{"latitude":40.8183573,"longitude":-73.965401} 

The ability of JSON to systematically describe arbitrarily structured and/or volatile 

data makes it both extremely powerful for programmers, who like flexibility, and 

Web platform operators, who like fast development. It also makes JSON potentially 
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challenging for database administrators and data analysts, both of whom typically 

like well-defined structure. Many commonly-used RDBMS and GIS software 

packages rely upon tabular row and columnar data storage accessing somewhat 

inflexible ‘designed-in-advance’ schemas (Tear, 2014) whereas the structure of 

Twitter tweets, and many other OSN or Web data interchange formats, is more 

likely to be unpredictable and also changes frequently (Faber, Matthes, & Michel, 

2016; Twitter, 2018b). Between 2012 and 2014 the maximum number of fields in 

the CSV files acquired and downloaded from DataSift and the number of key/value 

pairs in the corresponding JSON file variants of these data sets more than doubled, 

from 163 to 411. Most of the additional keys were found in Facebook data, not 

much of which had been recorded in 2012, and many of the key/value pairs held 

values in different language alternatives, e.g., several variants of Arabic, probably 

reflecting a change in Facebook’s multilingual architecture around this time. 

An additional 12.66GB of augmented data, derived from three NLP/geoparsing 

systems (Section 4.4.1, p147), all output in JSON format with wildly varying record 

structures, necessitated the selection of a database system capable of efficiently 

storing and querying (Section 4.5.1, p159) data held in this popular, but extremely 

variable, ‘semi-structured’ interchange language. As this proved much more 

difficult than anticipated, several different data management systems were 

evaluated. This process of evaluation is described in the following section. 

4.3.1.2 Data management systems 

As the research has progressed the ability to store, query and analyse unstructured 

text has proven a key requirement. The US2012 data set consists of ~1.7m date 

and time-stamped OSN messages, many of which may be geo-referenced directly or 

indirectly through text matching, entity extraction or other Natural Language 

Processing (NLP) techniques run against 30,125,821 space-tokenized words. The 

larger SCOT2014 data set consists of ~6.5m OSN messages and a massive 

205,089,540 space-tokenized words. It is clear that ‘the huge amount of free-form 
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unstructured text in the blogosphere, its increasing rate of production, and its 

shrinking window of relevance, present serious challenges to the […] analyst who 

seeks to take public opinion into account’ (Till, Longo, Dobell, & Driessen, 2014, 

p71). 

 

Figure 4-10 – Subjective scoring of the SQL and NoSQL data management systems used in 
this research (0=worst; 5=best) 

Figure 4-10 shows the matrix of data management systems used in this research, 

subjectively colour-coded from experience of installing software, importing CSV and 

JSON files or streams, querying and serving data to external 3rd party applications, 

e.g., Tableau visualisation software or Web-based APIs. It is apparent that all of the 

software products used had different strengths and weaknesses and that Oracle 

12c Release 1 (Section 4.3.1.3, p145) offered the strongest feature set overall. The 

competing systems are briefly evaluated below:  

• Installation – The software used and evaluated consists of a number of 

primarily Commercial Off the Shelf (COTS) products with one open-source 

NoSQL database (MongoDB) and a commercialised distribution (MapR) of 

Apache’s open-source Hive and Drill projects. The two conventional SQL 

databases (Microsoft SQL Server 2012 Release 2 and Oracle 12c Release 1) 

installed straightforwardly on physical hardware. MarkLogic 7, Oracle 

Endeca and MongoDB could be installed reasonably easily on Linux virtual 

machines (Appendix 8, p436). Installation of MapR in a clustered 

environment proved much more difficult. Experiments using a cluster 

installed as a set of Hyper-V Ubuntu Linux virtual machines on a Windows 

2012 Server host (Figure A8-1, p439) failed before professional assistance 
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from staff in the Institute of Cosmology and Gravitation (ICG) resulted in the 

successful installation of a five-node cluster on SCIAMA, the University of 

Portsmouth’s supercomputer (G. Burton, 2017). 

• Import CSV – Despite its ubiquity, CSV formatted data proved harder to 

import than expected. Initial imports using the ‘Import Data Wizard’ of 

Microsoft SQL Server 2012 R2’s Data Transformation Services (DTS) resulted 

in field truncation and data loss; two import attempts failed to correctly 

handle UTF-8 encoded strings resulting in data loss both of international 

characters (e.g., Spanish diacritics) and emoticons and these problems could 

not be overcome using either the more advanced SQL Server Data 

Transformation Tools (SSDT; Microsoft, 2013) or changed working practice 

(Murray, 2013). In response, Oracle 12c Release 1 was adopted and, after 

much coding of SQLLDR control files (Oracle, 2018d), successfully and 

verifiably imported all US2012 CSV data, and almost all SCOT2014 CSV 

data, rejecting just 57 badly formatted records out of 6,477,770. MapR Hive 

and Drill could both read UTF-8 encoded CSV data easily while the other 

data management systems, more attuned to document or semi-structured 

data storage, were not primarily designed to handle CSV data. 

• Import JSON – Aside from Microsoft SQL Server 2012 Release 2, which had 

no capabilities to import semi-structured JSON data, most of the software 

systems evaluated could import or ‘ingest’ this format. MapR Drill and 

MongoDB were the most elegant, the former simply requiring JSON files 

(still GZIP compressed) to be placed in the correct directory of the Hadoop 

Distributed File System (HDFS) cluster disk and the latter rapidly ‘ingesting’ 

flat files of multi-row UTF-8 encoded JSON into its internal database. The 

process in MarkLogic 7 was somewhat less straightforward as several large 

files containing millions of JSON records had to be split atomically into 

millions of separate files, each containing one JSON record. Oracle Endeca 

was able to read JSON straightforwardly but, as a developer edition, could 
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only read a limited number of records or a very limited number of key/value 

pairs for a larger number of records. MapR Hive was not designed for JSON 

data storage, although this can now be achieved (MapR, 2018). Oracle 12c 

Release 1, while requiring a more complicated setup routine (Section 

4.3.1.3, p145), successfully and verifiably imported all JSON data including 

the 57 records that had been rejected during import of the CSV variant files. 

• Query data – The most important consideration in adopting a data 

management system to store data is the ability of that system to query data 

(Codd, 1972). In this respect the seven systems evaluated differed markedly, 

although some of these differences undoubtedly arose from a combination 

of operator familiarity, expediency and inertia; each of which are common 

factors in decisions surrounding IT systems adoption (Agarwal & Prasad, 

2000; Venkatesh, Davis, & Morris, 2007). Considerable effort has been 

expended, drawing upon over thirty years of IT experience using multiple 

software systems, to read, store and query OSN data imported from CSV 

and JSON formats. Microsoft SQL Server 2012 Release 2, first used in this 

research, proved through SQL querying that the ETL steps undertaken to 

load CSV data into the database had not worked properly. SQL queries 

revealed the problems of field truncation and character set mishandling 

outlined above so that, although Microsoft SQL Server 2012 R2 was 

subsequently abandoned, its querying facilities (and the value of 

comprehensively checking data in this way upon loading) may be scored 

highly. Oracle 12c Release 1, with a broadly comparable and comprehensive 

querying tool, SQL Developer (Oracle, 2017a), scored similarly highly. Of the 

other systems MapR Hive and MapR Drill both offered the familiarity of SQL, 

although the software interface to execute queries was much less polished 

than the two mainstream SQL RDBMSs. The three document-store NoSQL 

databases provided extremely unfamiliar querying environments; MarkLogic 

7 required the development of an application, Oracle Endeca presented a 

pre-built Web browser-based application aspects of which, such as ‘faceted’ 
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search, were well-executed, and MongoDB presented a black-box; only 

addressable through JavaScript programming. 

• Serve data – The final component of this evaluation considers the ability of 

the data management systems to serve data. All of the software systems 

used are database servers and all of them are highly scaleable. Tests 

conducted on the 5-node MapR Hive cluster installed on the SCIAMA 

supercomputer, for example, showed that the software could store a 

massive ~3TB file of generated sample data which could be remotely 

accessed and queried using Hive (Tear, 2017). Other demonstrations 

showed how JSON data stored in MapR Drill on SCIAMA could be accessed 

over the Internet, live from a conference in Helsinki (Tear, 2016), and 

mapped and plotted using Tableau visualisation software on a laptop 

(Section 4.5.2, p161). Hence, the scores for MapR and for the two 

mainstream SQL RDBMSs, both of which are well-established and known to 

integrate well with a wide-range of 3rd party tools and applications, are high. 

The three document-store NoSQL databases did not score so highly in this 

evaluation as, despite some extremely impressive demonstrations at 

conferences, it proved difficult to access data stored in these systems using 

programming standards such as Open Database Connectivity (ODBC) or 3rd 

party tools including, until much more recently, the visualisation software 

Tableau.  

The files imported or ingested during this research are not ‘Big’ enough to be fully 

representative of some of the immense storage, manipulation or analysis problems 

occurring in significantly larger data sets. However, the experiences set out above 

usefully highlight technical, workflow and integration issues of relevance to 

individual researchers or small research teams. Zelenkauskaite & Bucy (2016) have 

stated that ‘even if physical access to data is available to scholars, computational 

skills and technical expertise become a limiting factor, thereby introducing a schism 
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in scholarly opportunities that conventional social science and humanities traditions 

are not entirely prepared to deal with.’ 

As data get ever bigger this problem may be amplified, necessitating better training 

in Big Data ‘spatial science and quantitative analysis’ for geographers (Johnston et 

al., 2014) in case geography, which in its spatial component – if not its history, 

theory and tenets – may be reduced to ‘just another data type’, and comes to be 

studied by computer scientists alone. Other researchers might have chosen other 

systems, however, Oracle’s 12c RDBMS was selected as the data management 

system used in this research, and is further detailed in the following section. 

4.3.1.3 Oracle 12c Release 1 

Only recently have commercial (Oracle 12c Release 1, July 2014) and open-source 

(e.g., PostgreSQL 9.3, September 2013) RDBMSs offered native storage and query 

support for JSON data, the preferred format for OSN and much other Web-based 

data interchange, which has moved ‘from being an underground secret, known and 

used by very few, to becoming the clear choice for mainstream data applications’ 

(Severance, 2012). Early difficulties in reading and storing JSON files focused 

attention on the need to import parallel CSV versions of these data in which, e.g., 

nested JSON key/value pairs containing arrays (such as the trends listed in Barack 

Obama’s earlier tweet, Figure 4-9, p139) were transposed by DataSift into three 

CSV fields containing delimited string literals (Table 4-4, p146).  

New JSON-handling features built into the Oracle 12c Release 1 (version 12.1.0.2.0) 

RDBMS were then used to successfully import JSON formatted variants of the same 

sampled OSN interactions into the OSNDATA database. Data are stored as 

Character Large Objects (CLOBs) with JSON constraint (Oracle, 2014a) in a 

permanent database table populated from an external staging table used to read 

files downloaded from DataSift (Table 4-3, p136). The SQL statement used to access 

one of these files is shown in Appendix 11 (listing 5, p479). 



Geotagging matters? 

146 

 

Table 4-4 – Transposition of nested, arrayed JSON into three CSV fields containing 
delimited string literals 

Type Content 
JSON "trends": { 

  "content": ["ohio", "can"], 
  "source": ["twitter"], 
  "type": ["Canada", "daily"] 
 }, 

CSV Content 
TRENDS_CONTENT ["ohio", "can"] 

TRENDS_SOURCE ["twitter"] 

TRENDS_TYPE ["Canada", "daily"] 

 

The SQL code opens and reads a JSON file from a directory on the machine, using 

newlines as the delimiter, in the UTF8 character set with an extended READSIZE 

of 1,048,576 bytes so each line of file input fits into the RDBMS memory buffer. 

From this external staging table data (effectively, the file) may be INSERTed into a 

permanent database table (defined in Appendix 11 listing 6, p480) using another 

SQL statement (Appendix 11 listing 7, p480). 

Successful querying, tabulation and analysis (Section 4.5.1, p159) of this stored 

JSON data led to the adoption of Oracle 12c Release 1 as the de facto data 

management system for this project. Oracle’s database software sits at the centre 

(Figure A8-3, p441) of a complex, multi-tenant computing environment described in 

Appendix 8 (p436). The software has been called upon to store ~8m OSN 

interactions recorded in 23.75GB of raw CSV and 23.15GB in raw JSON, 

supplemented by another 12.66GB of raw JSON output from three NLP/geoparsing 

systems used to detect toponymic mentions and other entities (e.g., persons, 

organisations) in OSN message text, linked/shared URLs and metadata. Procedures 

relating to data augmentation are discussed in the following section. 
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4.4 Data procedures 

The previous section has described how social media interaction data, downloaded 

from DataSift in CSV and JSON files, were loaded into the Oracle 12c RDBMS. 

Although Oracle's (2012) Text features enabled increasingly sophisticated indexing 

and querying of free-form text, additional procedures – using even more advanced 

Natural Language Processing (NLP) software – were adopted to search for and find 

mentions of place in OSN interaction message text and linked/shared content. 

These text-mining ‘augmentations, and the systems used to perform them, are 

described in the following section. 

4.4.1 Data augmentation 

Massive recent growth in the amount of unstructured electronic text available for 

analysis (JISC, 2012; Manyika et al., 2011) has spurred the development of many 

commercial and open-source software systems designed to ‘mine’, ‘augment’ or 

‘enhance’ textual data. As JISC (2012, p13) state, the ‘availability [of large amounts 

of text data] does not equate to being able to analyse easily the content to find 

sought after information or to develop new insights.’ There is simply too much text 

for individual researchers to read; e.g., JISC note that upwards of ‘1.5 million 

[journal] articles are added [by 11,500 journals] per year’ and specialist domain 

knowledge is required to make sense of certain text terms (e.g., ‘tree’, ‘branch’, 

‘leaf’ in JISC’s example) that may have very different meanings in different 

disciplines.  

JISC (2012, p13) propose that ‘Text mining offers a solution to these problems, 

drawing on techniques from information retrieval, natural language processing, 

information extraction and data mining/knowledge discovery’ in four stages: 

1. Enhanced information retrieval 

2. Linguistic analysis and entity recognition 
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3. Information extraction 

4. Data mining/Knowledge discovery 

Enhanced information retrieval has been used in this research programme, a) to 

search for relevant academic literature to contextualise the study (Chapter 2, p51), 

and; b) to search for relevant OSN interactions to provide case study material for 

the research (Chapter 3, p94 and Chapter 4, p118). As the ~8 million social media 

interactions recorded here could not possibly be examined individually, three 

Natural Language Processing (NLP) systems have been used to address JISC’s 

suggested stages 2 and 3. Two of the three systems, GATEcloud and CLAVIN-rest, 

offer somewhat similar geoparsing information extraction functionality allowing 

cross comparison, while the third, AlchemyAPI, is particularly well-suited to 

information extraction and knowledge discovery operations against Web-hosted 

URLs, which are widely-shared in OSN interactions. Several data mining and 

knowledge discovery processes address the fourth stage of JISC’s suggestions, using 

a mixture (Sections 4.5.1 and 4.5.2, pp159-161) of relational, non-relational and 

graph databases, queries, visualisation and statistical analyses (Section 4.5.3, p163). 

Stock (2018, p209) has noted that ‘During the last ten years, a large body of 

research extracting and analysing geographic data from social media has 

developed.’ Reviewing 690 papers accessing 20 social media platforms she states 

that ‘a wide array of […] approaches have been developed, with methods that 

extract place names from message text providing the highest accuracy.’ The three 

NLP packages successfully used for geographical entity recognition and extraction 

from message text and linked/shared content in this research are discussed below. 

A fourth subsection (4.4.1.4, p157) briefly describes two others since, as Gritta, 

Pilehvar, Limsopatham, & Collier (2018) have noted, there is a ‘substantial disparity’ 

between working or workable NLP entity extraction systems and those that are 

difficult to install, use or simply will not run. 
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4.4.1.1 General Architecture for Text Engineering (GATE) 

GATE, released as open-source software by a team at the University of Sheffield, ‘is 

over 15 years old and is in active use for all types of computational task[s] involving 

human language’ (GATE, 2017). Originally a desktop application, or a set of Java 

Archives (JARs) for use in ‘embedded’ applications, two more recent developments 

prompted adoption of the software for use in this research. First, the team released 

TwitIE (Bontcheva et al., 2013), a Twitter Information Extraction engine and ‘open-

source NLP pipeline customised to microblog text at every stage.’ Around 90% of 

the ~8m records in the case study research data corpus originate from Twitter, and 

tweets are notoriously ‘difficult [to process]: the genre is noisy, documents have 

little context, and utterances are very short’ (Bontcheva et al., 2013, p1). 

TwitIE is designed to process terse and frequently ungrammatical tweets using the 

‘sentence splitter’ and ‘name gazetteer’ functions of ANNIE (A Nearly-New 

Information Extraction system and another GATE component), supplemented by 

specially developed functions for language identification, tokenisation, 

normalisation, Part of Speech (POS) tagging and Named Entity Recognition (NER). 

GATE software operates on a Corpus, a set of documents or, in this case, a set of 

tweets. A Corpus can be constructed by searching for records within the Oracle 12c 

database, e.g., to find the 19 Twitter tweets recorded in the SCOT2014 data set 

made by Scottish First Minister Alex Salmond during the 2014 Scottish 

Independence Referendum campaign (Appendix 11 listing 8, p480).  

After loading the necessary plugins (File -> Manage CREOLE Plugins… to activate 

plugins Format_Twitter and Twitter) the TwitIE Ready Made Application 

may be launched. The appropriate Corpus is selected, and TwitIE run against it, 

yielding the sort of output shown in Figure 4-11 (p150). In this example checkboxes 

on the rightmost panel of GATE Desktop have been used to highlight Locations 

(pink), Persons (purple) and Organizations (green) recognised by the software in the 

text of Salmond’s 19 Twitter tweets. No human intervention has been necessary. 
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The software works well on the desktop, but is constrained by memory limits, and 

cannot deal with the millions of tweets in the research data corpus. Recognising the 

need to analyse increasingly massive text corpora, the GATE team developed 

GATEcloud.net, ‘a platform for large-scale, open-source text processing on the 

cloud’ (Tablan et al., 2012). NLP pipelines developed on GATE Desktop software can 

be exported to GATEcloud.net and run on dedicated machines, ‘harnessing the vast, 

on-demand compute power of the Amazon cloud’ (Tablan et al., 2012, p1). 

 

Figure 4-11 – Scottish First Minister Alex Salmond’s Twitter tweets processed using TwitIE 
on GATE Desktop 

Sharding, load-balancing and other ‘important infrastructural issues’ of the process 

are handled by the GATEcloud.net application which, the authors’ suggest, helps 

enable the ‘democratization of science’ by providing individual researchers or small 

research groups with ‘cutting-edge, data-driven, text-processing’ systems that are 

otherwise extremely difficult to set up (Tablan et al., 2012, p2). Having used GATE 

Desktop experimentally for some time, the entire research data corpus of ~8 million 

records was processed using GATEcloud.net (Figure A8-3, p441). The run was 

designed to perform Information Extraction and Named Entity Recognition, 

particularly of locations and, coincidentally, helped in beta testing of a new 

deployment of GATEcloud software (Roberts, personal communication, 2016). Input 
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files in DataSift’s JSON format, used earlier to help develop GATE’s DataSift reader 

(Bontcheva & Greenwood, personal communication, 2014), were processed using 

TwitIE with output to a set of 86 (US2012=16, SCOT2014=70) JSON files 

subsequently re-imported to the Oracle 12c database. 

Crucially, rather than outputting only input text (i.e., the message) and TwitIE’s 

augmentations, co-development work with Roberts (2017) ensured that ‘tweet IDs 

[were] passed through into the output’; making it much easier to join input and 

output for analysis using SQL in the database (Section 5.2.2.1, p193). The ability to 

join two tables of data together on a common key (e.g., an ID or identifier field) 

held in each is a central concept in data management (Codd, 1970). While tables 

can be joined on text fields (e.g., the message text of OSN interactions) there are 

many duplicated rows of message text (n=4,739,827), mainly Twitter retweets, in 

the OSNDATA database; each retweeted by an individual user with different 

characteristics (e.g., coordinate-geotagging or not). Using message text as the key, 

in this or similar instances, would not enable correct joining of metadata to the 

respective message input to and output from GATEcloud. The co-developed 

functionality in GATEcloud newly resulting from this research should, therefore, 

prove extremely useful for subsequent researchers. 

GZIP-compressed in Linux, GATEcloud.net output totalled 170MB (US2012) and 

790MB (SCOT2014) in size. Uncompressed, the US data set required 901MB of file 

storage and the Scottish data set 4.19GB. The tables storing this data in Oracle 12c 

are 2.34GB and 11.19GB in size respectively. 

4.4.1.2 AlchemyAPI 

AlchemyAPI, now re-branded Watson Natural Language Understanding and part of 

IBM’s Watson Developer Cloud service (IBM, 2017b), is Cloud-hosted, commercial 

software, available on a rate-throttled basis upon request to academic researchers. 

This RESTful API service has been used by several scholars (Cios & Kurgan, 2006; 

Gelernter & Mushegian, 2011; Kulshrestha, Zafar, Espin-Noboa, Gummadi, & 
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Ghosh, 2017; Quercia et al., 2012; Saif, He, Fernandez, & Alani, 2016) particularly 

for Twitter sentiment analysis, where it may help to ‘alleviate data sparsity [and] 

performs better than [other Web-hosted systems including Zemanta or OpenCalais] 

in terms of the quality and the quantity of the extracted entities [returned]’ (Saif, 

He, & Alani, 2012, p4). 

IBM (2017a) documentation states that AlchemyAPI offers: 

• Entity Extraction 

• Sentiment Analysis 

• Emotion Analysis 

• Keyword Extraction 

• Concept Tagging 

• Relation Extraction 

• Taxonomy Classification 

• Author Extraction 

• Language Detection 

• Text Extraction 

• Microformats Parsing 

• Feed Detection 

• Linked Data Support 

As a RESTful web service, calls to AlchemyAPI are made over Hyper Text Transfer 

Protocol (HTTP) using an API Key for authentication. Academic usage is restricted to 

30,000 ‘daily transactions’, compared to 2 million/day or more for commercial 

users, and the number of ‘transactions’ used to process each piece of text (e.g., 

OSN message text or text found at a linked/shared URL) will vary according to which 

calls, from the list above, are made to the service. 

Bespoke software was developed using Ruby (2017) scripts running on a CentOS 7 

virtual machine (Appendix 8, p436) to select data from Oracle 12c, pass it to the 
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AlchemyAPI service and store the returned JSON directly in the database. As the 

service is rate-limited, the XML-parsing Nokogiri (2017) plugin for Ruby was used to 

decode responses from the AlchemyAPI management URL to determine how many 

‘daily transactions’ remained to be consumed (Appendix 10, p451). Two 

applications were developed: 

1. PROCESS_RECS – A Ruby script, executed through a shell script called from 

cron, running every 10 minutes to process up to 150 records per run 

(Appendix A10.3, p451) selected from a ‘queueing’ table (ALCHEMY_API) 

created in Oracle 12c on the VM host, a Dell Latitude E7440 laptop running 

Windows 10. The queueing table was populated, with five SQL INSERT 

statements, to store five tranches of OSN interaction messages for 

AlchemyAPI processing (US2012_GEO Stream=146,424, SCOT2014 geo 

tagged=1,074, US2012_NON_GEO 1% sample tweets=92,304, and 

SCOT2014 1% sample tweets=56,622 records). Message text was 

processed using AlchemyAPI calls for Entity Extraction, Keyword Extraction, 

Concept Tagging, Sentiment Analysis, Relation Extraction, Text Extraction 

and Taxonomy Classification. The data processing allows for comparison, 

according to these various augmentations, for all coordinate geotagged 

records from each Stream against a random sample of non-coordinate-

geotagged records from both US2012 and SCOT2014 data sets. Results 

are presented in Chapter 5 (p186). 

2. PROCESS_URL_RECS – A Ruby script, executed through a shell script called 

from cron, running every 15 minutes to process up to 250 records per run 

(Appendix A10.4, p461) selected from the LI_LINKS_URLS_DISTINCT 

‘queueing’ table created in Oracle 12c on the Dell laptop VM host, as above. 

The queueing table was populated, using a SQL INSERT statement, with 

641,472 distinct link URLs (pointers to linked URLs made by Twitter or 

Facebook users in an approximate 80:20 ratio) derived from 3,485,840 URL 

links to online media (e.g., newspaper websites, blogs, YouTube videos etc.) 
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recorded in the LINKS_URL field of the main INTERACTIONS table. 

Linked URLs were processed using AlchemyAPI calls for Entity Extraction. 

The data processing allows for comparison of many detected entity types, 

particularly location, in linked URLs. Numbers of locations referenced in 

linked URLs may then be compared by user class, e.g., coordinate-

geotagging or not. Results are presented in Chapter 5 (p186). 

While GATEcloud.net could be set up and used within days to process ~8 million 

OSN interactions, rate-throttling of the AlchemyAPI service required the 

development of queuing tables, populated by numbers of records likely to be 

processed within the timescales available. All coordinate-geotagged US2012 and 

SCOT2014 OSN interactions were processed, and all distinct linked URLs, but only 

a 1% sample of all other OSN interactions from each of the two case study events. 

4.4.1.3 Cartographic Location and Vicinity INdexer (CLAVIN) 

CLAVIN (the Cartographic Location and Vicinity Indexer) is, according to its 

developers Berico-Technologies (2017), ‘an award-winning open source software 

package for document geotagging and geoparsing that employs context-based 

geographic entity resolution. It extracts location names from unstructured text and 

resolves them against a gazetteer to produce data-rich geographic entities.’ It is one 

of several gazetteer-based geoparsing solutions evaluated in this research (see 

Section 4.4.1.4, p157) but the only one that would compile and run reliably. The 

version of CLAVIN used, the CLAVIN-rest variant, is a ‘DropWizard RESTful micro-

service demonstration of CLAVIN, GeoNames, and OpenNLP or CLAVIN-NERD’ 

(Berico-Technologies, 2017). The software uses the Stanford CoreNLP toolkit 

(Manning et al., 2014; Stanford University, 2017) which ‘can give the base forms of 

words, their parts of speech, whether they are names of companies, people, etc., 

normalize dates, times, and numeric quantities, mark up the structure of sentences 

in terms of phrases and word dependencies, indicate which noun phrases refer to 

the same entities, indicate sentiment, extract particular or open-class relations 
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between entity mentions, get quotes people said, etc.’ (Stanford University, 2017). 

Stanford CoreNLP is widely used and can also be used in GATE. Like CLAVIN-rest, 

Stanford’s CoreNLP code is written in Java.  

 

Figure 4-12 – Scottish First Minister Alex Salmond’s Twitter tweets processed using CLAVIN-
rest running on a CentOS 7 virtual machine 

The Apache Maven ‘software project management and comprehension tool’ 

(Apache Software Foundation, 2017) was used to build and compile the code (mvn 

package was run against the repository downloaded from GitHub) on a CentOS 7 

virtual machine (Appendix 8, p436). The GeoNames (2016) gazetteer database 

allCountries.zip, listing  11,370,639 place names and locations with many 

language-specific spelling alternatives (e.g., Londres for London), was downloaded 

on 4 April 2017 and used as the location master file. When started, CLAVIN-rest 

presents a Web browser-based interface on localhost:9090 as shown in Figure 4-12.  

Text data (in this case First Minister Alex Salmond’s 19 sampled Twitter tweets from 

the 2014 Scottish Independence Referendum) may be copied into the TEXTAREA 

at the top of the browser page and, once submitted, will be geoparsed by CLAVIN-

rest. The mappable locations found in this example include ‘Scotland’ and ‘Europe’. 

Others, including ‘Westminster’, identified as a location by GATE Desktop (Figure 
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4-11, p150) in another of Alex Salmond’s Twitter tweets, has not been found. 

Geoparsers have different success rates (Gritta et al., 2018) and GATEcloud.net, 

AlchemyAPI and CLAVIN-rest could all be fooled by sentence structure, a problem 

returned to in Section 5.4 (p221). 

As a RESTful web service, CLAVIN-rest could also be called using curl, the Linux 

command to call URLs from the terminal. A shell script (Figure 4-13, p156) was 

developed to pass Universally Unique Identifiers and message content from OSN 

data (concatenating UUID and INTERACTION_CONTENT fields with the 

characters ‘|~|’, which did not appear anywhere else in message text) to CLAVIN-

rest. 

#!/bin/bash 
OLDIFS=$IFS 
IFS="|~|" 
while read f1 f2 
do 
    #echo "UUID is     : $f1" 
    #echo "CONTENT is  : $f2" 
    curl -s --data "$f2" --header "Content-Type: 
text/plain" 
http://localhost:9090/api/v0/geotagmin -w 
"|~|$f1\n" 
done < 
~/Desktop/vw_int_content_compdelim_utf8.txt | 
grep -v '{"resolvedLocationsMinimum":\[\]}'  
IFS=$OLDIFS 

Figure 4-13 – Shell script written to call CLAVIN-rest from the command line 

The standard output of CLAVIN-rest appends all GeoNames data to the input text, 

including multiple language-alternative gazetteer spellings (n=185 in the case of 

London, UK), creating extremely verbose and excessively large files (1.7GB in; 

~103GB out). This can be controlled through the use of the geotagmin URL 

argument (Figure 4-13), which prevents output of multiple language-alternative 

spellings. File sizes were further minimised by piping output through grep to store 

only the UUIDs, and resolved locations in JSON, of text that could be geoparsed. 
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This resulted in a much smaller output file size of 487.13MB. The script could be run 

in a Linux terminal on the Centos7 virtual machine using the command: 

./test_curl_line_at_a_time_minjson.sh > out.txt 

All 8,196,380 OSN records were passed through CLAVIN-rest and 1,978,404 records 

(24.14%) containing resolvedLocationsMinimum, an array of GeoNames 

locations with Latitude and Longitude coordinates in JSON, and UUID, to join back 

to the input text and associated metadata, were imported into the Oracle 12c 

database. Results from this exercise, and a comparison of CLAVIN-rest and the 

other NLP-based NERs used in this research, are presented in Chapter 5 (p186). 

4.4.1.4 Others 

Gazetteer search has played a sometimes confounding role in the development of 

GIS technology on the modern-day Web (G. Cheng & Du, 2008; Pradeepa & 

Manjula, 2016; Shi & Barker, 2011) and in historical applications (Southall et al., 

2011, 2009). The spelling of place names may change over time, many alternate 

spellings may be used, or places (e.g., Kaliningrad) may change their name 

altogether. Software may, or may not, be able to pick up on these subtleties, and 

few geoparsers come close to human levels of accuracy when identifying probable 

place names within text (Gritta et al., 2018). 

In addition to the GATEcloud.net, AlchemyAPI and CLAVIN-rest NLP-based NERs 

described above, several other geoparsers were assessed. Unfortunately, while 

showing promise, these systems failed to deliver either due to setup, coding or 

software compilation problems. 

• BALEEN – from the UK’s Defence Science and Technology Laboratory (2015) 

is another RESTful entity extraction framework designed to ‘extract 

information from unstructured and semi-structured text.’ The software uses 

Ordnance Survey-derived gazetteers which might have improved geoparsing 
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results against the SCOT2014 dataset. Unfortunately, the available 

downloadable version of Baleen would neither compile or run. 

• Edinburgh Geoparser – from the Language Technology Group (2014) at the 

University of Edinburgh (Alex, Byrne, Grover, & Tobin, 2014) has been 

widely used, and scored particularly highly in Gritta et al.'s (2018) review of 

five geoparsing systems. Version 1.1 (16/03/2016) was downloaded and 

installed on a Scientific Linux virtual machine. Packaged tests ran but the 

software would not run against the OSN data corpus examined here. 

It is probable that more time spent with either, or both, of these software packages 

would eventually have yielded results. However, both distributions are open-source 

projects and, as such, the onus is on the user to attempt to solve installation or 

setup problems. Neither system offered dedicated support and one of them (the 

Edinburgh Geoparser) is now a ‘retired’ project. Results presented in Chapter 5 

(p186) therefore rely upon NLP-based data augmentations produced using 

GATEcloud.net, AlchemyAPI and CLAVIN software. 

4.5 Data analysis 

All of the data feeding into the Oracle 12c RDBMS used in this research (Section 

4.3.1.3, p145), from case study data acquisition (Section 4.2.5, p134) and data 

augmentation (Section 4.4.1, p147), must be queried, tabulated and analysed to 

produce results. A database management system has no practical utility if it can 

only store data; files and file systems do that. This section details the range of data 

query, tabulation and analysis (Section 4.5.1, p159), data visualisation (Section 

4.5.2, p161) and statistical software (Section 4.5.3, p163) used to manipulate stored 

data. Measurements of geographicality resulting from these analytical methods are 

described in Section 4.6 (p164). 
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4.5.1 Data query, tabulation and analysis 

In 1972 Codd set out to ‘define a collection of operations on relations [or a] 

relational algebra’ which could be used to build a ‘query language’. He stated that 

‘In a practical environment [this query language] would need to be augmented by a 

counting and summing capability, together with the capability of invoking any one 

of a finite set of library functions tailored to that environment’ (Codd, 1972, p1). 

This work led directly to the creation of Structured Query Language (SQL) which has 

been used extensively in database management systems, whether relational or not, 

ever since. 

The two case study data sets, with added DataSift source indicator (STREAM), 

sequential numeric identifier (STREAMID) and Universally Unique Identifier 

(UUID) fields held in the main Oracle 12c table INTERACTIONS, is comprised of 

1,196,671,480 data points. Clearly it is impossible to analyse a >1 billion cell matrix 

without using sophisticated computer systems. Relational Database Management 

Systems (RDBMS) and Structured Query Language (SQL) have been developed to 

address large, complex, tasks of this type. As Wolfram (2006, p301) explains, 

‘DBMSs are primarily used to house structured textual and numeric data that have 

been compartmentalized into records and fields. This compartmentalization 

facilitates access and retrieval of data contents. Through the use of the SQL data 

manipulation language, one is able to readily summarize and process content. The 

power associated with these capabilities makes relational DBMSs and, specifically, 

SQL well suited for the storage and manipulation of informetric data.’  

SQL is particularly ‘well suited’ to generating descriptive counts and aggregations, 

using the COUNT… GROUP BY… syntax. In practice, many data investigations start 

by counting records, since ‘aggregation [offers] the ability to summarize 

information’ (van Renesse, 2003, p87, author's italics). Initial data investigation in 

this research followed the ‘manageability’ practice described by Knobbe, Siebes, & 

Marseille (2002), using standard SQL constructs such as COUNT, COUNT 
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DISTINCT, MIN, MAX, SUM, AVG and, significantly in the context of heavily-

skewed OSN data (Section 6.4.3, p255), MEDIAN. 

Upon successful completion of ETL data import processes (Section 4.3.1.3, p145), 

which themselves relied upon many SQL queries to check data consistency along 

the way, the first query run against the newly-created database counted the 

number of records in the INTERACTIONS table (Appendix 11 listing 9, p480). 

Table 4-5 – Count of Interactions by Stream 

STREAM COUNT 
US2012_GEO 146,424 
US2012_NON_GEO 1,560,967 
US2012_NON_GEO_HISP 11,276 
SCOT2014 6,477,713 

 

This simple statement was swiftly followed by a slightly more complicated SQL 

query designed to count the number of records by Stream (Appendix 11 listing 10, 

p480), yielding the result set shown in Table 4-5. On a laptop equipped with Solid 

State Disks (SSD)s, using a function-based bitmap index (Oracle, 2016b) on the 

STREAM field, the query ran in 2.104 seconds over 8,196,380 records. Many SQL 

queries of this type, some taking much longer to compute, or running within 

looping PL/SQL programmes (Feuerstein & Pribyl, 2005), have been issued as part 

of the investigatory process and are referenced throughout this thesis (Appendix 

11, p479). Queries have been designed to assess sparsity, coordinate and 

toponymic geographicality, temporality, spatiotemporality and skewness in the 

research data corpus of OSN interactions. Output has been visualised mainly 

through the use of Tableau and various GIS packages, together with Gephi graph 

analysis software. These software systems are described in the following section. 
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4.5.2 Data visualisation 

Most of the maps and charts in this thesis, excluding the maps in Section 6.4.4 

(p262) produced with QGIS (2018), have been generated using Tableau (2017b) 

Desktop Professional Edition versions 8.2 through 10.5 running under 64-bit 

Microsoft Windows Server 2012 R2 or Windows 10 Professional. Tableau (2017a) is 

made freely available to academic users having grown out of a data-based 

visualisation project (‘Polaris’) at Stanford University (Stolte, Tang, & Hanrahan, 

2002). Presenting Polaris, the authors stated that: 

In the last several years, large multidimensional databases have become 

common in a variety of applications, such as data warehousing and 

scientific computing. Analysis and exploration tasks place significant 

demands on the interfaces to these databases. Because of the size of 

the data sets, dense graphical representations are more effective for 

exploration than spreadsheets and charts. Furthermore, because of the 

exploratory nature of the analysis, it must be possible for the analysts to 

change visualizations rapidly as they pursue a cycle involving first 

hypothesis and then experimentation. 

(Stolte et al., 2002, p52) 

Polaris was designed ‘to discover structure, find patterns, and derive causal 

relationships’ in large databases. The software featured tight integration between 

visual design and data query, achieved through the use of Pivot Tables and ‘n-

dimensional data cubes [where] each dimension in [the] cube corresponds to one 

dimension in the relational schema’ (Stolte et al., 2002, p52). The design of Polaris 

exploited many of the graphing techniques (use of size, shape, colour etc.) first 

developed in Bertin's (1967) Semiology of Graphics, later codified in Wilkinson's 

(1999) computerised Grammar for Graphics. Now commercialised as Tableau, this 

system (VizQL, or Visual Query Language) allows the user to ‘[make] interactive 



Geotagging matters? 

162 

 

data visualization an integral part of understanding data’ (Tableau, 2017c) through 

the use of a ‘drag and drop’ interface which translates visual requirements (‘draw a 

map’, ‘plot a line graph’) into standard SQL queries, which can be executed against 

a large number of databases, including the Oracle 12c RDBMS used here. 

Tableau is not a conventional Geographic Information System (GIS), but does have 

mapping capabilities. Point plotting of Latitude/Longitude data and geocoding, with 

display against an OpenStreetMap (2017) backdrop, has been available since 

version 8. Version 10, released in 2017, supports inclusion of third-party maps in 

Keyhole Markup Language (KML), ESRI Shapefile, MapInfo (Tables and MapInfo 

Interchange Format) and GeoJSON formats (Marten, 2017). The software also 

features ‘Paging’, the computerised animation of time-series data – including 

spatiotemporal data – which has been used to temporally visualise coordinate-

geotagged OSN interactions. Even on a commodity SSD-equipped laptop, also 

running the Oracle 12c RDBMS, Tableau can rapidly produce graphical output from 

large (~8 million row) database tables or views. As the software has evolved, a wide 

range of connections to other database servers have been added, including major 

NoSQL software releases such as MapR Hadoop Hive and MongoDB mentioned 

earlier (Section 4.3.1.2, p140). This combination of features has made Tableau a 

particularly useful component of the exploratory spatiotemporal data analysis and 

visualisation methodology adopted in this research (Section 3.3, p102).  

Aside from Tableau, the usual range of desktop computing applications (e.g., 

Microsoft Excel) have been used together with QGIS (2018) and MapInfo (Pitney 

Bowes, 2018) GISs. One other specialist scientific computing package, Gephi 

(2018a), has also been used. This application, which describes itself as ‘the leading 

visualization and exploration software for all kinds of graphs and networks’ has 

proven particularly useful when analysing or visualising social network graphs, e.g., 

Twitter mentions relationships (Figure 4-5, p130; Figure 6-21, p277). The software 

stems from academic research (Bastian et al., 2009) and encodes several algorithms 
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commonly used in graph network analysis (Jacomy, Venturini, Heymann, & Bastian, 

2014; S. Martin et al., 2011) in a flexible and reasonably easy-to-use package. 

4.5.3 Statistical tests 

A series of 80 Oracle 12c database views, created in SQL (e.g., Appendix 11 listing 

37, p491), output numbers of NLP-detectable toponymic mentions in OSN 

interaction message text and linked/shared URL content for further analysis in R 

statistical computing software (The R Foundation, 2018). Paired (Welch’s) T-tests 

were used to measure statistical significance (Spector, 2018). 

Welch’s T-test is a variant of Student’s T-test and is more reliable when the two 

samples for comparison exhibit unequal variances and unequal sample sizes. This is 

the case in the current research where numbers of NLP-detectable toponymic 

mentions vary substantially, according to interaction or user categorisation (e.g., 

coordinate-geotagged/geotagging or not) and by OSN source/subtype (i.e.., 

Facebook post, Twitter tweet or retweet) within event. For example, at least 1 and 

at most 706 toponymic mentions per interaction were detected in non-coordinate-

geotagged Facebook interactions by GATEcloud in the SCOT2014 data set (Table 

A12-3, p506). Within events there are also sizeable discrepancies in ‘like-for-like’ 

sample sizes, e.g., in the US2012 data set GATEcloud detected toponymic 

mentions in 125,758 Twitter tweets; 21,455 of which were coordinate-geotagged 

and 104,303 were not (Table A12-1, p504). 

R scripts computed descriptive statistics (Appendix A12.1 listing 2, p494), T and P 

scores (Appendix A12.1 listing 3, p494) for numbers of NLP-detectable toponymic 

mentions in Facebook (FB), Twitter tweet (TW) and retweet (RT) message text or 

linked/shared URL content, whether coordinate-geotagged (GEO=Y) or not 

(GEO=N), for each of the three NLP/geoparser systems described in Section 4.4 

(p147); TwitIE on GATEcloud (GT), AlchemyAPI (AL against message text; LI 

against links) and CLAVIN-rest (CL). These computations are repeated for the two 
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case study electoral events, US2012 and SCOT2014. Summary statistics are 

presented in Section 5.3 (p219) while detailed statistical results and commentary 

are presented in Appendix A12.2 (p502). 

4.6 Data measurements 

The data subjects (Section 4.2, p119), preparations (Section 4.3, p135), procedures 

(Section 4.4, p147) and analysis methods (Section 4.5, p158) detailed in the 

preceding sections of this chapter were used to measure and score ‘geographicality’ 

in case study OSN interactions. The following section describes the measurement 

and scoring process in detail. Geographicality scores, at interaction and user levels, 

are reported upon further in Chapter 5 (p186) which presents the results of this 

investigation; answering the three research questions formulated earlier in this 

thesis (Section 1.7, p34) to determine whether coordinate-geotagged social media 

interactions and the users that create them, the most spatially expressive user 

class, are also the most geographically expressive in terms of toponymic mentions 

of place. 

4.6.1 Measuring and scoring ‘geographicality’ in OSN data 

The ~8 million record research data corpus examined in this study is comprised of a 

mixture of Facebook posts and Twitter tweets and retweets sampled in 2012 

(US2012) and 2013-14 (SCOT2014). Table 4-6 (p165) shows the number and 

percentage of OSN interactions by source, subtype and event. In the US2012 data 

set Facebook posts comprise just 3.33% (n=57,265) of all interactions sampled 

(n=1,718,667). In the SCOT2014 data set 12.12% (n=785,237) of all interactions 

sampled (n=6,477,713) are Facebook posts. Interactions sourced from Facebook 

comprise 10.28% (n=842,502) of the research data corpus overall (n=8,196,380) 

while interactions sourced from Twitter comprise the remaining 89.72% 

(n=7,353,878), split reasonably evenly between Twitter tweet (n=3,712,847) and 

retweet (n=3,641,031) subtypes. 
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Table 4-6 – Number and percentages of OSN Interactions by source, subtype and event 

Source Facebook 
Post 

Twitter 
Tweet 

Twitter 
Retweet 

Total 

n US2012 57,265 866,160 795,242 1,718,667 
% US2012 3.33% 50.40% 46.27% 100.00% 
n SCOT2012 785,237 2,846,687 2,845,789 6,477,713 
% SCOT2014 12.12% 43.95% 43.93% 100.00% 
n TOTAL 842,502 3,712,847 3,641,031 8,196,380 
% TOTAL 10.28% 45.30% 44.42% 100.00% 

 

Data-mining in SQL (Appendix 11 listing 11, p480) shows that most users 

(n=1,730,748; 71.04%) make only one interaction, 89.14% three or fewer 

(cumulative n=2,171,589), and 93.26% five or fewer interactions (cumulative 

n=2,271,917) in the research data corpus (Figure 4-14). Users making ≤5 

interactions created 3,171,447 or 38.69% of all interactions (Appendix 11 listing 12, 

p480). 

 

Figure 4-14 – Log number of interactions/user by number of users in the research data 
corpus 

The remaining 164,250 users (6.74% of n=2,436,167 total users) created 61.31% 

(n=5,024,933) of all interactions. Figure 4-14 shows that across the research data 

corpus the distribution of numbers of interactions/user is heavily skewed. However, 
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skewness by OSN source, event and subtype differs substantially (Figure 4-15) and 

is somewhat lower amongst coordinate-geotagging users. 

  

  

Figure 4-15 – Log number of interactions/user by Log number of users: overall, by event 
and by OSN source (all records; all coordinate-geotagged records) 

Table 4-7 (p167) shows descriptive statistics for interactions/user in the entire 

research data corpus (ALL) further broken down by event (US2012 and 

SCOT2014) and OSN source/subtype, both for all user interactions by OSN source 

(e.g., Facebook posts=FB-ALL, Twitter tweets=TW-ALL, Twitter retweets=RT-

ALL) and for all user coordinate-geotagged interactions by source/subtype (FB-

GEO, TW-GEO and RT-GEO). Statistics were created using the psych package 

(Revelle, 2018) in R (The R Foundation, 2018) from a script (Appendix A12.1 listing 

1, p493) reading counts of numbers of interactions/user derived from the main 

INTERACTIONS table in the Oracle 12c database using SQL (Appendix 11 listing 

13, p480). Table 4-7 (p167) shows that the median number of interactions/user 

across both events (ALL) is 1, with a maximum number of 11,046 interactions/user 

recorded during the SCOT2014 event. Skewness and kurtosis are discussed in 

more depth overleaf. 
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Table 4-7 – Descriptive statistics for interactions/user in the research data corpus (ALL), by 
event (US2012 and SCOT2014) and by source (FB=Facebook posts, TW=Twitter tweets, 

RT=Twitter retweets) whether all interactions (-ALL) or only coordinate-geotagged (-GEO) 

  n mean sd median min max range skew kurtosis se 

ALL 2,436,167 3.4 32.7 1 1 11,046 11,045 112 22,315 0.02 

US2012 1,060,163 1.6 3.3 1 1 295 294 21 761 0.00 

SCOT2014 1,424,087 4.6 42.7 1 1 11,046 11,045 87 13,230 0.04 

FB-ALL 318,688 2.6 13.4 1 1 2,881 2,880 70 10,213 0.02 

TW-ALL 1,216,471 3.0 29.2 1 1 9,623 9,622 142 31,565 0.03 

RT-ALL 1,170,795 3.1 29.0 1 1 6,482 6,481 78 10,296 0.03 

FB-GEO 1,052 1.1 1.5 1 1 45 44 24 647 0.05 

TW-GEO 121,045 2.1 9.4 1 1 2,503 2,502 170 42,271 0.03 

RT-GEO 50,120 2.0 5.5 1 1 300 299 17 507 0.02 

 

Skewness ranges from 17 (RT-GEO, coordinate-geotagged Twitter retweets) to 170 

(TW-GEO, coordinate-geotagged Twitter tweets) reflecting substantial differences 

in the distribution of numbers of interactions/user in each case (Table 4-7). High 

kurtosis values (up to 42,271 for TW-GEO and 31,565 for TW-ALL) show, as does 

(Figure 4-14, p165), a ‘heavy’ rightwards or ‘long-tailed’ distribution of 

interactions/user.  

Further analysis in SQL (Appendix 11 listing 14, p484) showed that 333 users made 

≥1,000 interactions in the research data corpus, accounting for 653,782 interactions 

comprised of 10,892 Facebook posts, 292,440 Twitter tweets and 350,450 retweets. 

One Twitter user created the maximum number of 11,046 interactions/user; 4,564 

tweets and 6,482 retweets. Figure 4-16 (p168), a binned log-log histogram, shows 

the tail-off in prolifically interacting users occurs at around 1,000-2,000 interactions 

per user. Although behaviour of this type is often indicative of roboticised posting 

(Blank & Lutz, 2017; Howard et al., 2018; Silva et al., 2013) the account in question 

(Mulder1981) is both a real user and a particularly prolific Twitter tweeter, 
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especially active during the 2014 Scottish Independence Referendum campaign 

(The Herald, 2017). The same user is also responsible for the maximum number of 

2,503 coordinate-geotagged Twitter tweets (TW-GEO in Table 4-7, p167) recorded 

in the SCOT2014 data set, many of which were coordinate-retweeted by other 

Twitter users throughout Scotland allowing measurement of dispersal effects (see, 

Section 6.4.2, p251 and Figure 6-4, p253). 

 

Figure 4-16 – Histogram of Log number of interactions/user against Log number of users 

Amongst the 333 most prolific users, making ≥1,000 interactions each (Figure 4-17), 

there was a mixture of those who tweeted (n=52, 15.62%) or retweeted exclusively 

(n=4, 1.20%) and those, in the majority, who both tweeted and retweeted (n=270, 

81.08%). The second most prolific Twitter user made 9,623 interactions in the 

SCOT2014 event, all of them tweets comprised of just 91 distinct messages, and 

was probably posting robotically. Just 7 users (2.10% of prolific users) on Facebook 

account for ≥1,000 interactions/user and many of their messages contained 

duplicate text. Skewness is common in OSN data and can pose problems for analysis 

(Lerman et al., 2018; A. Smith & Gaur, 2018). Various tests in SQL and R address this 

issue and the subject of skewness is returned to again in Section 6.4.6 (p279). 
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Figure 4-17 – Number of interactions by type created by prolific social network users 
ranked on number of interactions/user (≥1,000 interactions/user) 

Only 1,231 Facebook interactions are coordinate-geotagged, all of which were 

sampled during the SCOT2014 event (Table 4-8, p170). The other 355,714 

coordinate-geotagged interactions were comprised of Twitter tweets or retweets 

sampled by the various Streams shown in Table 4-8 and detailed in Appendix 7 

(p432). Overall, 356,945 (or 4.35% of) OSN interactions held coordinates but many 

of these (n=146,424 or 41.02%) were recorded by the US2012_GEO Stream which 

was deliberately designed to sample only coordinate-geotagged interactions 

(Appendix A7.2.1, p433). This inflates the percentage of coordinate-geotagged 

Twitter tweets to 6.82% across the research data corpus, where it would otherwise 

have been 3.00%, and the overall rate to 4.35% where it would otherwise have 

been 2.62%.  

The percentage of coordinate-geotagged retweets (2.81%) or Facebook posts 

(0.15%) is unchanged as neither source or subtype was sampled by this Stream. 

Geotagging rates by Stream are slightly lower, ranging 1.08-2.90% for any type of 

coordinate-geotagged interaction, and are shown in Table 4-1 (p128, US2012) and 

Table 4-2 (p132, SCOT2014) earlier in this chapter. All interactions in the 
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US2012_GEO Stream were, of course, coordinate-geotagged, although 85 records 

exhibited useless 0 Latitude, 0 Longitude coordinates. 

Table 4-8 – Coordinate-geotagged Facebook posts, Twitter tweets and retweets by Stream 
and across the entire research data corpus 

US2012 n Posts n Tweets n Retweets TOTAL 
US2012_GEO (1) 0 146,424 0 146,424 
US2012_NON_GEO 0 14,411 8,013 22,424 
US2012_NON_GEO_HISP 0 99 23 122 
Geotagged total 0 160,934 8,036 168,970 
Geotagged total excl. (1) 0 14,510 8,036 22,546 
US2012_GEO (1) 0 0 0 0 
US2012_NON_GEO 57,210 697,871 783,462 1,538,543 
US2012_NON_GEO_HISP 55 7,355 3,744 11,154 
Non-geotagged total 57,265 705,226 787,206 1,549,697 
TOTAL 57,265 866,160 795,242 1,718,667 
TOTAL excl. (1) 57,265 719,736 795,242 1,572,243 
% GEOTAGGED 0.00% 18.58% 1.01% 9.83% 
% GEOTAGGED excl. (1) 0.00% 2.02% 1.01% 1.43% 
SCOT2014 n Posts n Tweets n Retweets TOTAL 
Geotagged total 1,231 92,437 94,307 187,975 
Non-geotagged total 784,006 2,754,250 2,751,482 6,289,738 
TOTAL 785,237 2,846,687 2,845,789 6,477,713 
% GEOTAGGED 0.16% 3.25% 3.31% 2.90% 
RESEARCH DATA CORPUS n Posts n Tweets n Retweets TOTAL 
Geotagged total 1,231 253,371 102,343 356,945 
Geotagged total excl. (1) 1,231 106,947 102,343 210,521 
TOTAL 842,502 3,712,847 3,641,031 8,196,380 
TOTAL excl. (1) 842,502 3,566,423 3,641,031 8,049,956 
% GEOTAGGED 0.15% 6.82% 2.81% 4.35% 
% GEOTAGGED excl. (1) 0.15% 3.00% 2.81% 2.62% 

 

The coordinate-geotagging rates reported here are slightly higher than findings 

reported in the 2012 French Presidential Election technical proof of concept 

exercise (1.39%; Section 4.2.3, p123) but are broadly in line with, and usefully 

corroborate, results from Leetaru et al. (2013, Table 4) who report, in their research 

into over 1.5 billion Twitter interactions, ‘1.6 percent having Exact Location’ and 

coordinate-geotagged retweet rates as high as 4.57% in New York and 2.98% in 

London.  
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The choice of base used to calculate geotagging rates – research data corpus 

including or excluding the US2012_GEO Stream or geotagged Twitter tweets 

against total Twitter tweets etc. (Table 4-8, p170)  – alters these percentages just as 

the choice of base, e.g., UK, England, Scotland etc. does when calculating Census-

based population profiles (Section 6.4.4, p262) or other data of this type. 

Table 4-9 – Numbers and percentages of original (Facebook posts and Twitter tweets) and 
reposted (Twitter retweet) coordinate-geotagged interactions in the research data corpus 

Type  Posts + Tweets Retweets Total 
n Geotagged 254,602 102,343 356,945 
n Not geotagged 4,300,747 3,538,688 7,839,435 
TOTAL 4,555,349 3,641,031 8,196,380 
OVERALL % Geotagged 3.11% 1.25% 4.35% 

 

To avoid recalculation for different bases the summary totals and percentages 

shown in Table 4-9, above, (‘posts+tweets’ and ‘retweets’ over ‘all records’) are 

adopted in the following pages. 

Rates of coordinate-geotagging are low in the case study data sets. SQL queries, 

counts and further examination of the stored data show that: 

1. Spatiality in OSN interactions is binary – users either do, or do not, choose 

to record coodinates alongside their Facebook posts or Twitter tweets. 

2. Spatiality in Twitter retweets forms an unusual case – Sloan & Morgan 

(2015) note that ‘Retweets generated by invoking the retweet command in 

the Twitter user interface are not classed by Twitter as original content and 

are never geotagged. However, retweets generated by copying and pasting 

the content of a tweet into the tweet-composition box are classed as 

original content and can be geocoded (if the user chooses).’ There are many 

retweets (n=102,343) of this type in the research data corpus (Table 4-8; 

Table 4-9) and these are addressed separately in Section 6.4.2 (p251). 
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3. Geographicality in OSN interactions is scalar – Varying amounts of 

geographically referenceable material are created by all users, whether 

coordinate-geotagging or not. Message text and metadata, particularly in 

the more numerous fields available in OSN records sourced from Twitter, 

hold information with potential geographical value, including several of the 

ambient ‘geographic footprints’ mentioned in the literature by Q. Huang, 

Cao, & Wang (2014) and Stefanidis, Crooks, et al. (2013).  

To determine how ‘geographicality’ can more accurately be assessed, aside from 

simply calculating counts of explicitly spatially-referenced interactions, it is 

necessary to examine OSN metadata. This exhibited substantial disparity by OSN 

source; interactions sourced from Twitter were accompanied by many metadata 

fields while Facebook posts were not. Hence, it is also necessary to ‘mine’ OSN 

message text (Stock, 2018) and linked/shared URL content from both sources to 

detect toponymic mentions of place. Data augmentation of this type, using the 

NLP/geoparsing tools introduced earlier (Section 4.4, p147), can determine whether 

coordinate-geotagging or non-coordinate-geotagging users create or link to content 

making the most mention of NLP-detectable geographical entities. These results are 

presented in the following Sections 5.2.2 (p190) and 5.2.3 (p205) once the 

framework for calculating ‘baseline’ Geographicality Scores has been set out. 

Only 21 fields holding Facebook metadata and 50 holding Twitter metadata were 

apparent in the 146 fields imported from DataSift CSV files into the main 

INTERACTIONS table stored in Oracle 12c (Appendix A9.2, p443). The remaining 

75 fields held message text, creation date/time or other types of data (e.g., 

linked/shared URLs) common to either OSN platform, together with a number of 

DataSift augmentations including gender and salience discussed earlier (Section 

4.2.3, p123). Many of the OSN metadata fields record NULL, no data, values in 

rows. Just 33.01% of the 1,196,671,480 cells in the INTERACTIONS table 

contained values; the remaining 801,595,515 cells (66.99%) were null. Sparsity 



Geotagging matters? 

173 

 

analysis, more fully detailed later in Section 6.4.3 (p255), was used to determine 

which fields in the data set warranted examination as some fields were so sparsely 

populated (>99.99% null) that any analysis based upon their content would have 

been almost entirely worthless. Several metadata fields contained potentially useful 

geo-information (e.g., toponyms), but only for a subset of records, while row-based 

sparsity levels for all metadata fields varied substantially across Streams. 

Metadata fields storing Potential Geographic Information (PGI) were identified and 

scored using four integer values (0=None, 1=Low, 100=High, 200=High) through SQL 

analysis and exploratory data-mining. High value scores were given to original (100) 

or re-posted (200) Latitude and Longitude coordinate pairs, which allow 

straightforward mapping, and low value scores to any of the other PGI metadata 

fields requiring significant post-processing to extract geographical information from 

stored data, at highly variable levels of spatial resolution. The interaction message 

text itself, stored in the INTERACTION_CONTENT field, was not coded in this 

exercise as all message text may contain PGI and the search for this is considered 

separately, alongside RQ2, in Section 5.2.2 (p190).  

The scoring scheme was designed to produce a scalar ‘Geographicality Score’ for 

non-coordinate-geotagged interactions by summing integer scores for non-null 

fields across rows for each interaction in the database. Original and re-posted 

coordinate-geotagged interactions were given higher scores, of 100 and 200 

respectively, alongside any other PGI metadata fields so that a score for a 

coordinate-geotagged tweet could, e.g., end up at 107, or a retweet at 209. Higher 

integer scores for these two types of coordinate-geotagged interactions helped 

separate them into distinct classes for later analysis. PGI metadata fields and scores 

were recorded in a Microsoft Excel spreadsheet containing column/field names 

from the INTERACTIONS table and various other calculations derived from SQL 

queries, e.g., % non-null rows across the entire data set for each field. The total 

score for any given interaction was designed to replicate programmatic strategies 
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frequently adopted when developing a geoparser (F. Liu, Vasardani, & Baldwin, 

2014; Shi & Barker, 2011; Zhang & Gelernter, 2014), e.g., if Field1 exists then check 

Field2; if Field2 and Field3 are not null check for coordinates in Field4 etc. 

The integer scores assigned to each of the 35 identified PGI metadata fields are 

shown in Table 4-10 alongside a commentary detailing potential utility. 

Table 4-10 – Coding scores for 35 Potential Geographic Information (PGI) metadata fields 

PGI metadata field Comment Score 
TW_RT_USER_GEO_ENABLED LOW VALUE 1 
TW_RTED_USER_GEO_ENABLED LOW VALUE 1 
TW_RTED_USER_TIME_ZONE LOW VALUE 1 
TW_RTED_USER_UTC_OFFSET LOW VALUE 1 
TW_RTED_USER_LOCATION LOW VALUE (Mars etc.), NEEDS NLP 1 
TW_RT_USER_LOCATION LOW VALUE (Mars etc.), NEEDS NLP 1 
TW_USER_LOCATION LOW VALUE (Mars etc.), NEEDS NLP 1 
TW_USER_TIME_ZONE LOW VALUE 1 
TW_USER_UTC_OFFSET LOW VALUE 1 
TW_RT_USER_TIME_ZONE LOW VALUE 1 
TW_RT_USER_UTC_OFFSET LOW VALUE 1 
INTERACTION_GEO_LATITUDE IF SO GREAT, HALF THE HIGH 

SCORE 
50 

INTERACTION_GEO_LONGITUDE IF SO GREAT, HALF THE HIGH 
SCORE 

50 

TW_GEO_LATITUDE IF SO GREAT, BUT DO NOT DOUBLE 
COUNT 

0 

TW_GEO_LONGITUDE WILL BE IN 
INTERACTION_GEO_LATITUDE 

0 

TW_PLACE_FULL_NAME CLEAN DATA, NEEDS NLP 1 
TW_PLACE_ID RELATED TO 

TW_PLACE_FULL_NAME, DO NOT 
DOUBLE COUNT 

0 

TW_PLACE_NAME RELATED TO 
TW_PLACE_FULL_NAME, DO NOT 
DOUBLE COUNT 

0 

TW_PLACE_PLACE_TYPE RELATED TO 
TW_PLACE_FULL_NAME, DO NOT 
DOUBLE COUNT 

0 

TW_PLACE_URL RELATED TO 
TW_PLACE_FULL_NAME, DO NOT 
DOUBLE COUNT 

0 
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TW_PLACE_COUNTRY RELATED TO 
TW_PLACE_FULL_NAME, DO NOT 
DOUBLE COUNT 

0 

TW_PLACE_COUNTRY_CODE RELATED TO 
TW_PLACE_FULL_NAME, DO NOT 
DOUBLE COUNT 

0 

TW_RTED_PLACE_COUNTRY RELATED TO 
TW_RTED_PLACE_FULL_NAME, DO 
NOT DOUBLE COUNT 

0 

TW_RTED_PLACE_COUNTRY_CODE RELATED TO 
TW_RTED_PLACE_FULL_NAME, DO 
NOT DOUBLE COUNT 

0 

TW_RTED_PLACE_FULL_NAME CLEAN DATA, NEEDS NLP 1 
TW_RTED_PLACE_ID RELATED TO 

TW_RTED_PLACE_FULL_NAME, DO 
NOT DOUBLE COUNT 

0 

TW_RTED_PLACE_NAME RELATED TO 
TW_RTED_PLACE_FULL_NAME, DO 
NOT DOUBLE COUNT 

0 

TW_RTED_PLACE_PLACE_TYPE RELATED TO 
TW_RTED_PLACE_FULL_NAME, DO 
NOT DOUBLE COUNT 

0 

TW_RTED_PLACE_URL RELATED TO 
TW_RTED_PLACE_FULL_NAME, DO 
NOT DOUBLE COUNT 

0 

TW_RTED_GEO_LATITUDE VERY HIGH VALUE (GEO DISPERSAL) 100 
TW_RTED_GEO_LONGITUDE IF SO GREAT HALF THE VERY HIGH 

SCORE 
100 

TW_PLACE_ATT_ST_ADDRESS CLEAN DATA, NEEDS NLP 1 
TW_RTED_PLACE_ATT_ST_ADDRESS CLEAN DATA, NEEDS NLP 1 
TW_PLACE_ATT_LOCALITY TOPONYMIC, MAY NEED LOOKUP 1 
TW_PLACE_ATT_REGION TOPONYMIC, MAY NEED LOOKUP 1 

 

As Table 4-10 shows, the scoring system was only applicable to OSN interactions 

sourced from Twitter. Facebook posts sampled during the 2012 US Presidential 

Election, and in 2013-2014 during the 2014 Scottish Independence Referendum 

campaign, held no PGI metadata capable of generating such a scoring scheme, 

except for 1,231 coordinate-geotagged interactions (Table 4-8, p170), scored at 

100, sampled by the SCOT2014 Stream.  
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In designing a Geographicality Score for interactions, or aggregating interaction 

level scores to calculate modal scores for each user, the presence of Potential 

Geographic Information in metadata fields enables the calculation of summary 

distributions of geographicality via SQL constructs without the need to develop a 

geoparser, several of which already exist (Gritta et al., 2018) and have been used 

here to identify toponymic mentions of place in users’ message text and 

linked/shared URL content. Results of this work are presented in Section 5.2.2 (RQ2, 

p190) and Section 5.2.3 (RQ3, p205) later in this chapter. 

As the data in the INTERACTIONS table are derived from DataSift’s conversion of 

Twitter (2018) JSON formatted data to CSV format, care must be taken not to 

‘double-count’ RDBMS fields which were originally ‘children’ of another JSON key 

‘parent’ (see Figure 4-9, p139 and Table 4-4, p146). For example, the field 

TW_PLACE_ID is associated with several related fields and a query run against it 

to return non-null values (Appendix 11 listing 15, p484) also returns data from 

these co-populated fields (Table 4-11, p176). Consequently, only one member of a 

‘grouped’ field-set is scored to avoid double-counting. This explains several 0 scores 

for PGI metadata shown in Table 4-10 (p174), where comments denote how one 

field is related to another and allocates a score to the lead variable only or, in some 

cases (e.g., coordinate pairs), splits scores between two metadata fields. 

Table 4-11 – Example of TW_PLACE_ID co-populated metadata fields 

Country Code Full Name Place ID Place Name Type 
United States US New York, NY 27485069891a7938 New York city 
United States US West Deptford, 

NJ 
3b524e5ca68b7923 West 

Deptford 
city 

United 
Kingdom 

GB Belfast, Belfast a5d1791165a6517e Belfast city 

 

The same Microsoft Excel spreadsheet used to code metadata field scorings was 

also used to dynamically construct SQL to create a persistent database view 

(Appendix 11 listing 16, p484) for the 21 non-zero-coded and scored fields shown in 
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Table 4-10 (p174). The logic exploits the SQL CASE statement (Oracle, 2018b) using 

the following syntax for any given metadata [FIELD] and [SCORE]: 

SELECT UUID, 
(case  
     when  
          (FIELDn is not null) then SCOREn  
           else 0  
           end) as FIELD_SCOREn 
FROM INTERACTIONS 

The sum of the coding scores computed across each row, testing for nullness by 

case for each scored PGI metadata field, created an overall Geographicality Score 

for all interactions in the research data corpus using SQL (Appendix 11 listing 17, 

p479) the distribution of which is shown in Figure 4-18 (p178). Most interactions 

(n=8,051,729 or 82.39%) held one or more low-value PGI metadata fields. High 

value coordinate metadata was evident in 3.11% of records comprised of a mixture 

of original Facebook posts and Twitter tweets and a further 1.25% was comprised 

of re-posts in the form of coordinate-geotagged Twitter retweets. The majority of 

non-coordinate-geotagged interactions (n=6,395,784 or 78.03% of the research 

data corpus) held 1-9 non-null PGI metadata fields. Just 4 records (0.000049%) held 

9 items of PGI metadata; these were grouped with the preceding class (8). Class 

100+ is a grouping of original coordinate-geotagged interactions scored 100-105 

and 107. Class 200+ is a grouping of re-posted (retweeted) coordinate-geotagged 

interactions scored 202-210 inclusive. Those interactions with a 0 Geographicality 

Score (n=1,443,651) were comprised mainly (58.27%) of Facebook posts 

(n=841,271, i.e. almost all Facebook posts; Table 4-8, p170) which could not be 

assigned to other classes due to a lack of available PGI metadata. A further 598,544 

Twitter tweets (41.46% of the 0-scored interactions) and 3,836 Twitter retweets 

(0.27%) held no PGI metadata. 
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Figure 4-18 – US2012/SCOT2014: Distribution of Geographicality Scores at interaction level 
across both events 

 

Figure 4-19 – US2012/SCOT2014: Modal distribution of Geographicality Scores at user level 
across both events 
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Figure 4-19 (p178) shows the distribution of the Geographicality Score at user level, 

computed using Oracle's (2017b) STATS_MODE function in SQL to score all 

2,436,167 users by their modal (most frequent) Geographicality Score at interaction 

level (Appendix 11 listing 18, p486). The similarity in the distribution of scores at 

interaction and user levels is explained by OSN posting behaviour observed in the 

research data corpus; 71.04% of users made just one interaction and 93.26% five or 

fewer so the distribution of Geographicality Scores at interaction and user levels is 

bound to be similar. 

Despite significant skewness in numbers of interactions/user (Table 4-7, p167) the 

distribution of modal Geographicality Scores by posting frequency (Figure 4-20, 

p179) shows strong similarity (Pearson Correlation coefficient 0.96) between 

infrequent (users making ≤5 interactions) and frequent contributors (users making 

≥6 interactions) to the research data corpus.  

 

Figure 4-20 – Percentage distribution of Modal Geographicality Scores for users making <=5 
interactions, >=6 interactions and any number of interactions in the research data corpus 

The high correlation in modal Geographicality Scores between users who made ≤5 

interactions and all users (Pearson’s r=0.99) and between those who made ≥6 
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interactions and all users (r=0.96) suggests that the scoring scheme is not badly 

affected by skewness in numbers of interactions/user. The relative contribution of 

PGI metadata fields to each class of the computed Geographicality Score is shown 

in Figure 4-21.  

 

Figure 4-21 – Contribution of PGI metadata fields to each Geographicality Score class 

The largest contributor to scores, TW_USER_LOCATION, present in 1,752,373 

(21.38% of) interactions and derived from the free-form self-reported user location 

field on Twitter, was generally ‘assumed [to be] strongly typed geographic 

information with little noise and good precision’ until Hecht, Hong, Suh, & Chi's 

(2011, p237) report ‘found that 34% of users did not provide real location 

information, frequently incorporating fake locations or sarcastic comments that can 

fool traditional geographic information tools.’ Similar results were evident here, 

where the TW_USER_LOCATION field, completed in response to a Twitter 

registration form asking ‘Where in the world are you?’ (Hecht et al., 2011) was 

found to contain many non-geographical references (e.g., ‘World Wide Web’ or ‘In 

my skin’) as well as mentions of cities, states, countries and, in some cases, Latitude 

and Longitude coordinates. 
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Figure 4-22 – US2012: Interactions mapped by World Time Zones (yellow=low, red=high) 

 

Figure 4-23 – SCOT2014: Interactions mapped by World Time Zones (yellow=low, red=high) 

Other highly contributory PGI metadata fields shown in Figure 4-21 (p180) included 

TW_USER_TIME_ZONE (n=1,752,379, 21.38% of interactions) and another time-

related field, TW_USER_UTC_OFFSET, with just two fewer populated records. As 

Twitter does not adhere to the Olson standards for time zone naming (Internet 

Assigned Numbers Authority, 2017) analysing or mapping Twitter’s named time 

zones may require significant post-processing (Mahmud, Nichols, & Drews, 2012, 

2014) and has not been attempted here. It is possible, however, to aggregate 

(Appendix 11 listing 19, p486) and map (Figure 4-22 and Figure 4-23, p181) 
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numbers or percentages of interactions grouped by the TW_USER_UTC_OFFSET 

field. Recorded by Twitter in seconds these values (e.g., 14,400 or -10,800) can be 

converted into hours and minutes (i.e., +04:00, -03:00), joined to World Time Zone 

boundaries and mapped. These maps usefully show levels of activity at time zone 

level for the two case study electoral events but otherwise provide very little 

additional ‘spatial granularity’ for further analysis (Dalton & Thatcher, 2015). A 

similar set of metadata (Figure 4-21, p180) relating to Twitter retweet or retweeted 

and potentially also erroneous self-reported location fields, alongside further time 

zone data, furnishes many of the other frequently encountered, but low value, PGI 

metadata fields found in the INTERACTIONS table. 

The difficulty inherent in deriving geo-information from Twitter and other OSNs has 

spurred much research effort in Geography and related disciplines (Section 2.6, 

p77; References, p319) but is not the focus of this study. Stock (2018) has found 

that of the 42 methods used to geographically augment OSN data, applied 

predominantly in the literature to Twitter interactions (the top source of OSN data 

analysed in 54.2% of 821 surveyed papers) and much less-widely to Facebook posts 

(in 6th place with just 2.1% of surveyed papers; Stock, 2018, Table 1, p213), 

techniques which ‘[extract] place names from messages’ have given the best 

accuracy. These techniques are applied here (Section 5.2.2, p190) not to test the 

accuracy of any given geoparsing approach, although three systems have been 

evaluated (Section 5.4, p221), but to test the Geographicality Assumption (Section 

1.7, p34) often implicitly adopted in the analysis of geotagged OSN messages; that 

coordinate-geotagging users are the most geographically expressive of all OSN 

users.  

There is a general expectation that coordinate-geotagging users of social media 

platforms will mention place in their messages, and an equally strong expectation 

that the places they mention will be proximal to the geotagged coordinates of their 

post. I. L. Johnson et al. (2016) have demonstrated that ‘localness’ of this type is 
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exhibited in only ~75% of coordinate-geotagged OSN messages (from Twitter, Flickr 

and Swarm). Nobody, until now, has asked the more fundamental question; who 

mentions place most; coordinate-geotagging or non-coordinate-geotagging users of 

OSN sites? The measurement and scoring typology outlined in this section has been 

used to categorise Twitter tweet and retweet interactions according to the type and 

value of any Potential Geographic Information held in key metadata fields. The 

technique does not extend well to Facebook posts, which have no analogous PGI 

metadata fields and only 1,231 of which are coordinate-geotagged. All Twitter 

tweets, retweets and Facebook posts may, however, be augmented by detecting 

geographicality in message text and linked/shared content using NLP/geoparsing 

techniques. Chapter 5 (p186) presents the results of these text-mining 

investigations which are reliant upon the research methods detailed above. 

4.7 Summary 

The role of the Data Scientist is apparently ‘The Sexiest Job of the 21st Century’ 

(Davenport & Patil, 2012) as Castells' (1996, 2009) Rise of the network society 

creates a data-driven ‘information age economy’. Popular online ‘Cheat Sheets’ 

(Ohri, 2014) for budding Data Scientists encourage their readers to ‘write code, 

understand statistics [and] derive insights from data’ detailing a number of skills or 

technologies which these titans of the new information age should command, 

including ‘R, Python, Java, SQL, Hadoop (Pig, Hive Query Language, MapReduce) 

etc.’ Data Scientists have been described as ‘Engineers of the Future’ (van der Aalst, 

2014); analytical experts (Agarwal & Dhar, 2014) offering improved ‘data-driven’ 

decision-making (Baesens, 2014) and predictive insight into human or machine 

behaviour (Dhar, 2013). 

The availability of large data sets appears to be revealing, as Zelenkauskaite & Bucy 

(2016) have argued, an ‘emerging [Kuhnian] research paradigm [in the growth of] 

computational social science’ which is exposing a ‘scholarly divide’ between those 

with the resources and skills needed to access, handle and store Big Data and those 
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without. Geographic data have always been ‘big’ (S. Li et al., 2016) but are usually 

highly structured (Graham & Shelton, 2013) whereas the types of social media 

interactions used in this research can be a lot bigger, measured in terms of the 

‘petabytes, exabytes, zettabytes and, yottabytes’ of Foley's (2013) Extreme Big 

Data, and are often ‘messy’, characterised by a mixture of un-/semi-/structured 

elements such as text, images or toponymic geographical references. 

These characteristics present ‘challenges’ for many established or conventional 

forms of computational analysis (Kambatla et al., 2014; Tsou, 2015). The ‘Data Lake’ 

may, perhaps, be more accurately be thought of as a ‘Data Swamp’; requiring 

significant skills in Virtual Machine (VM), Operating System (OS) and software setup 

to create ‘filtering systems’ capable of revealing meaningful information hidden 

within ‘otherwise turbid depths’ (Tear & Healey, 2017). 

The methods used in this research have been selected to meet the requirement to 

quantitatively ‘mine’ large amounts of qualitative data, the ~230 million words of 

free-form text deposited by ~2.4 million users in ~8 million social media messages 

which, in turn, link to yet more content in ~3.5 million (~650,000 distinct) shared 

URLs. Consequently, this research adopts technologies centred around a well-

established Relational Database Management System, Oracle 12c (Appendix 8, 

p436; Figure A8-3, p441), capable of storing and querying large amounts of 

structured (CSV) and semi-structured (JSON) data collected online from Facebook 

and Twitter, all of which has been augmented by three NLP/geoparsing systems. 

Unless, or until, a high performance, large scale and potentially all-encompassing 

‘CyberGIS’ is developed (S. Wang, 2013) it seems likely that those managing, 

analysing and visualizing text heavy spatiotemporal OSN data will continue to 

integrate a number of products or technologies to fulfil their individual operational 

or research requirements.  

Zelenkauskaite & Bucy (2016) have correctly stated that ‘There is no such thing as a 

small scale, qualitative analysis of big social data.’ The results of this research, 
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presented in the following chapter, depend upon careful collection, preparation, 

augmentation, analysis and measurement of social media data. Answers to the 

three research questions set out in the introductory chapter of this thesis (Section 

1.7, p34) are presented overleaf. 
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5 NLP/GEOPARSING RESULTS 

5.1 Introduction 

Earlier chapters have introduced (Chapter 1, p1) and contextualised this study 

(Chapter 2, p51) detailing the methodology adopted (Chapter 3, p94) and methods 

used (Chapter 4, p118) in this investigation. The current chapter presents results 

from this research, challenging the prevailing Geographicality Assumption (Section 

1.7, p34) that coordinate-geotagging users are the most geographically expressive 

of all OSN users. 

One main section, with three subsections, addresses the three research questions: 

1. How can baseline ‘geographicality’ be assessed and categorised in OSN 

data? Section 5.2.1 (p188) lays the foundation for the following analyses by 

examining the utility of the classification scheme designed in Section 4.6.1 

(p164) to assess and categorise ‘baseline’ geographicality in OSN data. The 

research data corpus consists of ~8m records sourced overwhelmingly 

(~90%) from Twitter, in a roughly even mix of tweets and retweets, with 

another ~10% of interactions (i.e., individual messages and accompanying 

metadata) comprised of Facebook posts. Few of these OSN interactions are 

coordinate-geotagged but many contain items of Potential Geographic 

Information (PGI) such as toponymic mentions of place in self-reported 

user location fields, which may be text-mined, or time zone offsets in 

seconds, which may be mapped. Data analysis and mining, in SQL, were 

used to score each of the identified PGI metadata fields to create an overall 

‘Geographicality Score’ at the interaction, i.e., message, level. As multiple 

interactions were created by some users in the research data corpus the 

Geographicality Score was also computed at user level. The classification 

scheme provides a baseline for subsequent NLP and geoparsing operations 

which can be used to show, a) how much these processes can augment 
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geographicality and, b) how evenly any such uplifts in NLP-detectable 

geographicality are distributed between coordinate-geotagging and non-

coordinate-geotagging users of the two case study OSNs.  

2. Does NLP-detectable ‘geographicality’ in message text increase in line 

with ‘spatiality’? Section 5.2.2 (p190) builds upon the preceding section by 

applying NLP and geoparsing techniques, reported against Geographicality 

Scores, to detect toponymic mentions of place in interaction message text, 

the field which offers the greatest source of potential geographical uplift 

available in OSN data (Stock, 2018). Message text has been widely studied 

and much research, e.g., in geographic information retrieval (Purves et al., 

2018), is devoted to extracting geo-information from social media posts. 

Less attention has been devoted to determing who tweets, retweets or 

posts with the most geographical information. Answering this question, 

using three NLP/geoparsing systems, addresses the second research 

question. The methods adopted all produce output which can be data-

mined in SQL to determine, a) whether uplifts in geographicality are evenly 

distributed amongst all users of OSNs by Geographicality Score, or b) 

whether uplifts are unevenly distributed, particularly amongst coordinate-

geotagging and non-coordinate-geotagging users of OSN sites. 

3. Does NLP-detectable ‘geographicality’ in linked/shared 3rd party content 

increase in line with ‘spatiality’? Section 5.2.3 (p205) addresses the third 

research question by considering how coordinate-geotagged and non-

coordinate-geotagged interactions and the users that create them link to 

and share 3rd party content. The posting of linked and shared material in 

the form of URLs to internal (OSN) or external (Web) content is an 

important characteristic of social media communications (Bartlett & Miller, 

2013). While message text has been widely studied, much less attention 

has been paid to linked/shared content, partly as consuming and 

processing it can be difficult and partly as a result of the prevailing focus on 

analysing message text. This section details the results of text-mining 
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~650,000 distinct URLs in the search for references to locations and various 

other detectable ‘entities’ including, e.g., persons and organisations. SQL 

data-mining is used to determine which Geographicality Score classes, 

particularly amongst coordinate-geotagging and non-coordinate-

geotagging users, are most likely to link to 3rd party material making most 

frequent mention of place.  

Results detailing statistical tests of significance are presented in Section 5.3 (p219) 

and a comparative evaluation of the effectiveness of the three NLP/geoparsing 

methods employed in this research is given in Section 5.4 (p221), ahead of the 

chapter summary (p225). Further discussion of results follows in Chapter 6 (p227), 

which also presents additional findings arising from the exploratory spatiotemporal 

analytical methodology adopted (Chapter 3, p94) and the range of methods 

employed in this research (Chapter 4, p118). 

5.2 Research questions 

This chapter is organised around the three research questions defined earlier in this 

thesis (Section 1.7, p34), outlined above, and addressed in sequence below. 

5.2.1 RQ1 – How can baseline ‘geographicality’ be assessed and categorised in OSN 

data? 

Section 4.6.1 (p164) describes the development of the Geographicality Score used 

in this research, a measurement system based on the presence of different types of 

Potential Geographic Information (PGI) in OSN interaction metadata. Analysis and 

coding in SQL (Appendix 11 listing 16, p484) derived integer Geographicality Scores 

for each interaction in the research data corpus, based upon a coding scheme for 

21 out of 35 identified PGI metadata fields shown in Table 4-10 (p174). Eleven 

distinct classes were observed in the two case study data sets; zero geographicality, 

some geographicality (1-9) and spatialised geographicality (class 100+ for original 
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coordinate-geotagged Twitter tweets and class 200+ for coordinate-geotagged 

Twitter retweets). Geographicality Scores, calculated at the interaction level (Figure 

4-18, p178), were also computed at user level (Figure 4-19, p178) by determining 

the modal (most common) score for all interactions made by each user (Appendix 

11 listing 18, p486). Geographicality Scores provide a baseline for assessing and 

categorising geographicality – at a range of spatial scales, e.g., from small-scale 

world time zones through to (apparently accurate) coordinate-geotagged Latitude 

and Longitude point locations  – in OSN interaction metadata. The system has two 

principal advantages, Geographicality Scores are: 

1. Easy to understand and straightforward to code. 

2. Flexible; allowing, e.g., cross-tabulation of results in later analyses. 

The scoring system does, however, have one distinct disadvantage: 

1. Interactions cannot be scored where they lack available metadata. 

Almost all Facebook posts (n=841,271 ; 58.27% of zero-scored interactions), a large 

number of Twitter tweets (n=598,544, 41.46%) and 3,836 Twitter retweets (0.27%) 

completely lacked PGI metadata. While these interactions could not be scored using 

the methods developed in Section 4.6.1 (p164) they can, along with all other 

positively-scored interactions, be geographically ‘augmented’ by searching for 

toponymic mentions of place in message text. Stock (2018), Gritta et al. (2018) and 

Purves et al. (2018) all concur that searching for toponymic place names in OSN 

interaction message text is most likely to prove successful in enhancing 

geographical referencing in social media data. This method, based upon searches 

conducted using the three NLP/geoparsing systems detailed earlier in Section 4.4.1 

(p147), has been employed here to detect and count numbers of toponymic 

mentions in the message text (Section 5.2.2, p190) and linked/shared URL content 

(Section 5.2.3, p205) of all OSN interactions in the research data corpus. Cross-

tabulation of these counts against Geographicality Scores, the results of which are 
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presented below, helps to determine which classes of interactions and users are 

most likely to make most mention of place in message text or linked/shared 

content. The following two sections answer RQ2 and RQ3 set out in the 

introductory chapter of this thesis (Section 1.7, p34) using these methods. 

5.2.2 RQ2 – Does NLP-detectable ‘geographicality’ in message text increase in line 

with ‘spatiality’? 

Three NLP/geoparsers (Section 4.6.1, p164) have been used to search for and 

augment any ‘geographicality’ detected in OSN message text. Two graphs (Figure 

5-1 and Figure 5-2, p191) help to provide a summary of the findings reported 

below. Despite adopting technically different solutions to the ‘challenge’ of 

location-detection in free form text (S. Li et al., 2016) both GATEcloud and CLAVIN-

rest, the two systems successfully used to text-mine all ~8m social media messages 

in the research data corpus, produced highly comparable results. Processing rate 

restrictions in the third NLP/geoparser used, AlchemyAPI, meant that only subsets 

of the research data corpus could be processed and these results are presented 

separately in Section 5.2.2.2 (p198). 

In the US2012 data set (Figure 5-1, p191) message text contains a similar average 

number of NLP-detectable locations/interaction regardless of geoparser (CLAVIN-

rest in light blue, GATEcloud in darker blue). Although original coordinate-

geotagged messages (Twitter tweets and Facebook posts, Geographicality Score 

100+) contain as many as 1.449 average locations/interaction (according to 

GATEcloud) the average number of locations detected in zero-scored interactions is 

slightly higher at 1.586. In the SCOT2014 data set (Figure 5-1, p191; CLAVIN-rest in 

light grey, GATEcloud in darker grey) original coordinate-geotagged messages 

contain on average 1.829 locations/interaction (GATEcloud) against a higher 

average of up to 4.213 locations/interaction for interactions with a 0 

Geographicality Score. This class is comprised of many records (n=841,271; 58.27% 
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of all 1,443,651 zero-scored interactions) sourced from Facebook (Section 4.6.1, 

p164).  

 

Figure 5-1 – US2012/SCOT2014: Average number of locations detected / interaction by 
Event, Geoparser and Geographicality Score 

 

Figure 5-2 – US2012/SCOT2014: Average number of locations detected / user by Event, 
Geoparser and Modal Geographicality Score 

When results are cross-tabulated against modal Geographicality Scores at user level 

(Appendix 11 listing 18, p486) the distribution of average numbers of locations 
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detected/user differs markedly (Figure 5-2, p191) from the interaction level 

distribution shown in Figure 5-1. In the US2012 data set, which has very few 

Facebook interactions, CLAVIN-rest (light blue) and GATEcloud (darker blue) again 

detect similar average numbers of locations/user, with the highest average (2.08) 

found amongst coordinate-geotagged, and original, Twitter tweets and Facebook 

posts (Geograpicality Score 100+). In the SCOT2014 data set, however, CLAVIN-

rest (light grey) and GATEcloud (darker grey) find, on average, more locations/user 

in Geographicality Score classes 1-8, recording 4.28/user against 3.43/user for 

coordinate-geotagging Twitter or Facebook users. The average number of NLP-

detectable locations/user in the zero-scored class ranges 10.14 (CLAVIN-rest) to 

13.20 (GATEcloud) depending upon geoparser. As noted above, this class is 

comprised of large numbers of Facebook posts lacking in PGI metadata fields 

(Section 4.6.1, p164). Facebook’s lack of geographic metadata does not prevent 

interactions sourced from this OSN platform having potential, and potentially 

greater, geographical value than Twitter-sourced interactions. On the contrary, 

Facebook posts appear to have significantly more geographical value, following 

NLP-based location entity detection, than Twitter tweets or retweets, including 

coordinate-geotagged variants of either. 

Stock (2018, p227) has noted that ‘It is currently very difficult for researchers who 

wish to apply social media data to a specific research question […] to determine the 

best approach to use to extract geographic data, to evaluate the limitations of 

alternative approaches, and then to use the methods for their own research.’ 

Summarising the state of location mining in social media, Stock (2018, p227) also 

points out that ‘Twitter is by far the most frequently used social media platform for 

geospatial research, despite being only 11th in global rankings by number of users, 

and research on more popular platforms (e.g. Facebook) is much more limited. 

There is a need for research into some of these less frequently used platforms, 

including the analysis of the location of content of particular kinds across and within 

the platforms.’ The remainder of this section presents detailed results from the 
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three alternative NLP/geoparsing systems used to text-mine Twitter and Facebook 

message text in this research, valuably contributing to knowledge in the two main 

areas identified by Stock (2018). Augmenting geographicality in OSN interactions 

remains technically challenging but is possible using any of the three systems 

detailed below, each of which offers distinctive approaches to the problem. 

5.2.2.1 GATEcloud 

Effective collaboration with researchers at the University of Sheffield’s Department 

of Computer Science (Bontcheva & Greenwood, personal communication, 2014; 

Roberts, personal communication, 2016) and participation in beta programmes has 

helped develop enhanced functionality for GATEcloud.net, the Cloud-hosted 

instance of Sheffield’s General Architecture for Text Engineering (GATE) software 

(Section 4.4.1.1, p149). GATE provides a ‘family of open source text analysis tools 

and processes [and] is one of the most widely used systems of its type with yearly 

download rates of tens of thousands and many active users in both academic and 

industrial contexts’ (Cunningham, Tablan, Roberts, & Bontcheva, 2013). GATEcloud 

works at much larger scale on Amazon’s Cloud computing infrastructure, enabling 

researchers to run specially developed ‘NLP algorithms [which] tend to be complex, 

[making] their parallelization and deployment on cloud platforms a non-trivial task’ 

(Tablan et al., 2012). As Bontcheva et al. (2013, p1) note, ‘Processing microblog text 

is difficult: the genre is noisy, documents have little context, and utterances are 

very short.’ GATE’s TwitIE pipeline ‘has been specifically adapted to microblog 

content’ and runs at scale on the GATEcloud service. 

All US2012 and 98.14% of SCOT2014 social media messages have been 

successfully processed using TwitIE on GATEcloud (Table 5-1, p194). To avoid a Java 

OutOfMemoryError on GATEcloud servers, 120,727 longer Facebook posts from 

the SCOT2014 data set were discarded as TwitIE is geared towards the analysis of 

~140-character Twitter-type text. The software has, nonetheless, successfully 

processed 721,775 Facebook posts. 
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Table 5-1 – US2012/SCOT2014: GATEcloud processing 

US2012 N Records N Processed % Processed 
Facebook 57,265 57,265 100.00% 
Twitter Tweet 866,160 866,160 100.00% 
Twitter Retweet 795,242 795,242 100.00% 
Totals 1,718,667 1,718,667 100.00% 
SCOT2014 N Records N Processed % Processed 
Facebook 785,237 664,510 84.83% 
Twitter Tweet 2,846,687 2,846,687 100.00% 
Twitter Retweet 2,845,789 2,845,789 100.00% 
Totals 6,477,713 6,356,986 98.14% 

 

Named Entity Recognition and Information Extraction using TwitIE on GATEcloud 

can detect Token (i.e., individual words), Emoticon, Hashtag, URL, Address, 

Date, Location, Organization, Person, Money, Percent, SpaceToken 

(spaces) and Sentence types in Twitter-type OSN message text. The detection of 

all possible types, particularly Tokens, creates extremely large JSON output files 

(US2012=3.02GB in, 4.74GB out; SCOT2014=19.0GB in, 54.9GB out) which, 

initially, could only be joined to input records stored in the Oracle 12c database 

using the (potentially duplicated) message text of each interaction as the key. 

Co-development work with University of Sheffield staff (Roberts & Tear, personal 

communication, 2017) updated TwitIE’s data import routine to preserve unique 

identifiers (DataSift’s INTERACTION_ID) for output during processing. Running 

TwitIE on GATEcloud without Token, Money, Percent, SpaceToken or 

Sentence detection results in significantly smaller JSON output files for re-import 

to the Oracle 12c database (US2012=901MB, SCOT2014=4.19GB). Once imported 

the JSON output from TwitIE on GATEcloud could easily be joined to source tables 

in Oracle 12c using the retained INTERACTION_ID field as the key. This 

development, It is hoped, will be of significant future value to researchers 

processing large social media corpora held in DataSift JSON, standard Twitter JSON 

or other OSN JSON formats. 
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The main entity type of interest returned in GATEcloud JSON following TwitIE 

processing is Location, in the locType key, which references indexed 

characters (i.e., the nth characters in the message text) containing the detected 

location; these are coded region, province, post, unknown, country, 

country_abbrev, city, airport, racecourse or pre. These codings are 

mainly self-evident, except for pre and post which refer to first/last matches to 

‘bit[s] of a location [covering] things like “Mount”, “East”, “Cape”, “Isle of” etc. 

[which co-occur with] a proper noun’ (Tear & Maynard, personal communication, 

2018). TwitIE on GATEcloud detects locType in the message text of 263,296 

US2012 interactions, identifying a further 2,088,788 messages containing locations 

in the SCOT2014 data set.  

Overall, 2,352,084 interactions, or 28.69% of all 8,196,380 interactions, are found to 

contain locations in message text. As each interaction may mention multiple 

locations, the JSON array of locations returned by TwitIE must be ‘unpacked’ into a 

relational view using Oracle 12c’s NESTED PATH syntax for further analysis 

(Hammerschmidt, 2015; Appendix 11 listing 20, p451). TwitIE’s output may be 

illustrated by joining the input INTERACTION_ID and output ID_STR fields to 

the INTERACTIONS table in Oracle 12c (Appendix 11 listing 21, p486), selecting 

Presidential Candidate Barack Obama’s Twitter tweet shown earlier in this thesis 

(Figure 4-9, p139) and the output of GATEcloud processing against this message 

text (Figure 5-3, p196). 

In this example, TwitIE finds entities of Person, URL and Location type. The 

Location.locType is “province” and the indices [41, 45] point to 

characters 41-45 of the message text, containing the geographically-relevant 

word ‘Ohio’. SQL queries designed to count against this view (e.g., Appendix 11 

listing 22, p486) showed that TwitIE on GATEcloud detected 330,389 locations in 

the US2012 data set with a further 4,315,548 in the larger SCOT2014 data set 

(Table 5-2, p197). 
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{ 
 "text": "Happening now: President Obama speaks 
in Ohio about the choice in this election. RT so 
your friends can watch, too. 
http://t.co/d42qgdn8\n\n", 
 "entities": { 
  "Person": [{ 
    "indices": [25, 30], 
    "surname": "Obama", 
    "kind": "fullName", 
    "rule": "GazPerson", 
    "gender": "male", 
    "ruleFinal": "PersonFinal" 
   } 
  ], 
  "URL": [{ 
    "indices": [116, 136], 
    "rule": "URL", 
    "temp_category": "NN", 
    "kind": "URL", 
    "length": 20, 
    "string": "http://t.co/d42qgdn8", 
    "replaced": 12, 
    "category": "URL" 
   } 
  ], 
  "Location": [{ 
    "indices": [41, 45], 
    "kind": "locName", 
    "rule": "InLoc1", 
    "locType": "province", 
    "ruleFinal": "LocFinal" 
   } 
  ] 
 }, 
 "id_str": "1e227914e2f4ac80e0740cf699462aae" 
} 

Figure 5-3 – GATEcloud TwitIE output for Presidential Candidate Barack Obama’s Twitter 
tweet (Figure 4-9, p139) 

TwitIE is not a dedicated geoparser and does not return coordinates alongside 

detected Location entities. Although gazetteers are used to resolve location 

entities in text these are much smaller than the ~11m row GeoNames (2016) 

gazetteer used by CLAVIN-rest (Section 5.2.2.3, p202). Instead the software is 
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designed to apply ‘constructive [NLP-based] rules that look for common words that 

are often part of a location name like "River", "Hill", "Island", etc.’ (Roberts & Tear, 

personal communication, 2017) as well as considering sentence structure, e.g., the 

words ‘to’ and ‘from’ are often followed by location mentions. The number of 

locations detected in message text by TwitIE on GATEcloud compares favourably 

with the 24.14% of location-bearing interactions found by CLAVIN-rest (yielding an 

overall total of 3,524,958 resolved locations against GATEcloud’s 4,645,937) using 

the more extensive GeoNames gazetteer  

The ratio between numbers of interactions and numbers of locations resolved by 

TwitIE on GATEcloud shows that Facebook posts, with their longer text content, 

produce more location mentions per message (1.9 against an average of 1.22 for 

Twitter tweets or retweets in the US2012 data set) rising significantly to 5.66 

location mentions per message in the SCOT2014 data set, where Facebook-based 

interactions make up a higher proportion of the data set (12.12% of total, vs. 3.33% 

US2012, see Table 4-8, p170). The relevance of this finding is expanded upon in 

the summary (p225) of this Chapter and in the discussion (p227) which follows. 

Table 5-2 – US2012/SCOT2014: Number of resolved locations detected by GATEcloud in 
Facebook (FB), Twitter tweet (TW) and Twitter retweet (RT) interactions 

 
US2012 RATIO SCOT2014 RATIO TOTAL 

FB resolved locations 25,405 
1.90 

2,097,506 
5.66 

2,122,911 
FB n interactions 13,341 370,774 384,115 
TW resolved locations 153,085 

1.23 
1,087,698 

1.31 
1,240,783 

TW n interactions 123,960 833,235 957,195 
RT resolved locations 151,899 

1.21 
1,130,344 

1.28 
1,282,243 

RT n interactions 125,995 884,779 1,010,774 
Total Resolved 330,389 

1.25 
4,315,548 

2.07 
4,645,937 

Total Interactions 263,296 2,088,788 2,352,084 
 

It possible to produce numerous analyses by joining GATEcloud output on 

INTERACTION_ID to the main INTERACTIONS table in Oracle 12c and, 

particularly, to determine whether interactions or users with different 
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Geographicality Scores tweet, retweet or post with differing propensity to mention 

locations in their message text. Results of this analysis are shown in Figure 5-1 

(p191) and Figure 5-2 (p191) and are statistically tested, alongside results from the 

other NLP/geoparser systems discussed below, in Section 5.3 (p219). 

5.2.2.2 AlchemyAPI 

A bespoke program written in the Ruby language (Appendix A10.3, p451) was used 

to pass interaction message text to the Cloud-hosted AlchemyAPI service, recently 

rebranded by IBM as Watson Natural Language Understanding (IBM, 2017c). 

AlchemyAPI (for convenience), is another NLP system able to detect various 

geographical and other entity types found in interaction message text. In contrast 

to TwitIE on GATEcloud or CLAVIN-rest, the first of which has very low costs for 

academic users and the second of which is free open-source software, AlchemyAPI 

is a commercial offering, available to academic users on a rate-limited basis. To pass 

all ~8m social media messages through AlchemyAPI at the permitted academic use 

rate of 30,000 API transactions per day would require ~1,866 processing days if the 

number of transaction ‘credits’ used to process each snippet of interaction message 

text matched the 7 credits/interaction used here.  

Table 5-3 – US2012/SCOT2014: Number of records by tranche processed by AlchemyAPI 

Tranche N Records 
US2012_GEO Stream 146,424 
US2012_NON_GEO 1% sample tweets 15,151 
SCOT2014 geo-tagged tweets 93,378 
SCOT2014 1% sample tweets 56,622 

 

As this timescale was considered unrealistic, several smaller tranches of data that 

could be processed within more realistic time frames were inserted into a queuing 

table (ALCHEMY_API) used to control daily AlchemyAPI processing. The number 

of records in each tranche is shown in Table 5-3 (p198). 
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Focusing on detecting toponymical differences in the message text of coordinate-

geotagged and non-coordinate-geotagged interactions, all records from the 

US2012_GEO Stream (n=146,424), comprised wholly of coordinate-geotagged 

Twitter tweets, were inserted into the queueing table using SQL (Appendix 11 

listing 23, p487). Similar statements populated the other tranches shown above 

using the SQL in Appendix 11 (listings 24-26) and, in the case of the 1% samples, 

using Oracle’s SAMPLE clause (Hornick, 2010) to insert numbers of records 

processable within a reasonable ~3-4 months time frame. The Ruby program, 

running on a CentOS 7 virtual machine, communicates with the Oracle 12c database 

on the laptop host over a TCP/IP network using Oracle Call Interface 8 (OCI8) 

middleware (Figure A8-3, p441).  

 

Figure 5-4 – US2012/SCOT2014: Number of records processed per day by AlchemyAPI 

It proved impossible to fetch CLOB data storing message text from the database 

using this interface and, consequently, as the Ruby programme (Appendix A10.3, 

p451) processed each queued item of message text this was CAST (Oracle, 2018c) 

to a VARCHAR data type of length 140 (the maximum length of a Twitter tweet at 

the time) and processed, at the rate of ~3,000 interactions/day, over a period of 

120 days (Figure 5-4, p199). Gaps in Figure 5-4 show periods when the CentOS 7 

virtual machine running on laptop hardware, or the laptop itself, were switched off. 
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Running the code from an always-on computer, or without rate throttling, would 

yield results much more quickly, as would a higher daily rate limit. Paying customers 

accessing Watson Natural Language Understanding may process 5 million records 

or more per month for ~$1,800/month (IBM, 2017c). Overall (Figure 5-5), the 

number of entity types detected in message text shares some similarities, but 

important differences, with the number of entity types found in linked/shared URL 

content (Section 5.2.3, p205; Figure 5-8, p215).  

 

Figure 5-5 – US2012/SCOT2014: Number of distinct entities by type identified in message 
text by AlchemyAPI across all sampled tranches processed (n=311,575) 

In both interaction message text (Figure 5-5, p200) and linked/shared URL content 

(Figure 5-8, p215), AlchemyAPI detects most mentions of the Person entity type. 

This reflects frequent mentions of political figures (Barack Obama, Mitt Romney, 

Alex Salmond and others) across both corpora. Subsequently, linked/shared URL 
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content most frequently mentions Organization, Country, Quantity and 

Company types. Conversely, in interaction message text, AlchemyAPI next 

identifies TwitterHandle, Hashtag, Country and Organization entity 

types. This accurately reflects the different nature of the two corpora, Twitter 

tweets and linked articles, and the inclusion of many TwitterHandles (e.g., 

@BarackObama) and Hashtags (e.g., #indyref) in users’ Twitter tweets. 

Taking the clearly geographical entity types (Country, City, StateOrCounty, 

Continent, GeographicFeature and Region), as well as testing for any 

coordinates returned in JSON by AlchemyAPI, it is possible to count numbers of 

geographical entities and determine the rate of geographical entity detection by 

tranche using SQL (Appendix 11 listing 27, p487). Table 5-4 shows these results for 

each tranche. In both US2012 and SCOT2014 events coordinate-geotagged 

Twitter tweets have slightly lower rates of geographical entity detection than 

corresponding 1% samples drawn from the same electoral event. 

Table 5-4 – US2012/SCOT2014: Number of geographical entities detected in Twitter tweets 
by AlchemyAPI showing the rate (entities/tweet) for each sampled tranche 

Tranche (Twitter tweets) Entities Tweets Rate 
US2012_GEO geotagged 21,522 146,424 0.15 
US2012_NON_GEO 1% sample  2,597 15,151 0.17 
SCOT2014 geotagged 23,974 93,378 0.26 
SCOT2014 1% sample  17,407 56,622 0.31 

 

Differences in the rate of geographical entity detection between coordinate-

geotagging users’ Twitter tweets and corresponding 1% samples are slight within 

electoral events. Perhaps counter-intuitively, however, and as with results from 

AlchemyAPI-based linked/shared URL content analysis (Section 5.2.3, p205), 

explicitly coordinate-geotagged interactions have slightly fewer detectable 

mentions of geographical entities in their message text than the corresponding 1% 

sample of non-coordinate-geotagged Twitter tweets in both events. Between the 

two political events, it appears that the 2014 Scottish Independence Referendum 
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generated a rate (0.31 geographical entities per tweet) roughly twice as high as that 

shown (0.17) in the 2012 US Presidential Election. There is no obvious explanation 

for this difference in geographical entity detection rates, suggesting that further 

research is necessary to determine how such rates might vary between events of 

various types in the future. 

As with TwitIE on GATEcloud (Section 5.2.2.1, p193) geoparsing using AlchemyAPI 

suggests that those who are most geographic in depositing coordinate information 

alongside their Twitter tweets are slightly less geographically expressive than all 

users as measured by numbers of mentions of NLP-detectable geographical entities 

in message text. Statistical tests demonstrating the significance of this previously 

unreported result, alongside results from the other NLP/geoparser systems 

discussed in this chapter, are presented in Section 5.3 (p219). 

5.2.2.3 CLAVIN-rest 

CLAVIN-rest, Berico Technologies’ open-source Cartographic Location and Vicinity 

INdexer (Berico-Technologies, 2017), is a geoparser employing Stanford CoreNLP 

(Stanford University, 2017) and the extensive ~11 million record GeoNames (2016) 

gazetteer to detect references to locations in free-form text, returning coordinates 

from GeoNames in JSON when detecting a match. If TwitIE on GATEcloud and 

AlchemyAPI, detailed above, may be considered specialist NLP toolkits capable of 

detecting locations (amongst many other entities) in text, CLAVIN-rest may be 

considered a specialist geoparser, capable of augmenting detected locations with 

coordinates but incapable of detecting other non-geographical entity types in text. 

Using a version of CLAVIN-rest compiled on a CentOS 7 virtual machine (Appendix 8, 

p436) and the Linux shell script detailed earlier (Section 4.4.1.3, p154; Figure 4-13, 

p156) all 8,196,380 items of interaction message text were geoparsed by CLAVIN-

rest using a file output from the Oracle 12c database. This UTF-8 encoded file held 

UUID (for uniqueness, and subsequent SQL joins) and OSN message text exported 

in a delimited format using a compound delimiter (Section 4.4.1.3, p154) which did 
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not otherwise appear (as commas, pipes and most other common CSV file 

delimiters did) within interaction message text. From the input file, CLAVIN-rest 

wrote 1,978,404 lines in 487.13MB consisting of UUID and geoparser output in 

JSON. As with GATEcloud (Section 5.2.2.1, p193; Figure 5-3, p196) and AlchemyAPI 

(Section 5.2.2.2, p198) this output consists of an array of detected locations, in the 

JSON key resolvedLocationsMinimum, as shown in Figure 5-6. 

{ 
    "resolvedLocationsMinimum": [{ 
            "geonameID": 5174035, 
            "name": "Toledo", 
            "countryCode": "US", 
            "latitude": 41.66394, 
            "longitude": -83.55521 
        }, { 
            "geonameID": 4990729, 
            "name": "Detroit", 
            "countryCode": "US", 
            "latitude": 42.33143, 
            "longitude": -83.04575 
        }, { 
            "geonameID": 4839335, 
            "name": "New Center Cemetery", 
            "countryCode": "US", 
            "latitude": 41.60704, 
            "longitude": -72.65815 
        } 
    ] 
} 

Figure 5-6 – CLAVIN-rest output showing resolved (i.e., successfully geoparsed) locations 

Once re-imported into Oracle 12c, a database view was created around this stored 

output to ‘unpack’ array data into rows using SQL (Appendix 11 listing 28, p488). 

Counts against this view showed 1,978,404 OSN interactions, 24.14% of 8,196,380 

total interactions, contained one or more resolved locations in message text. As any 

one OSN interaction may mention several locations, the view can be used to count 

the number of resolved locations detected in the entire research data corpus. 

Altogether, 3,524,958 spatial locations were identified in the ~2m records 
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successfully geoparsed by CLAVIN-rest. Numbers of resolved locations by OSN type 

are shown in Table 5-5.   

Table 5-5 – US2012/SCOT2014: Number of resolved locations detected by CLAVIN-rest in 
Facebook (FB), Tweet (TW) and Retweet (RT) interactions 

 
US2012 RATIO SCOT2014 RATIO TOTAL 

FB resolved locations 22,019 
1.80 

1,573,145 
3.98 

1,595,166 
FB n interactions 12,199 395,112 407,311 
TW resolved locations 120,491 

1.19 
832,941 

1.25 
953,433 

TW n interactions 101,664 667,263 768,927 
RT resolved locations 119,979 

1.18 
856,383 

1.22 
976,363 

RT n interactions 101,599 700,567 802,166 
Total Resolved 262,489 

1.22 
3,262,469 

1.85 
3,524,959 

Total Interactions 215,462 1,762,942 1,978,404 
 

It is apparent, as with TwitIE on GATEcloud (Section 5.2.2.1, Table 5-2, p197), that 

45.25% of resolved locations (n=1,595,166) detected by CLAVIN-rest stem from 

407,311 successfully geoparsed OSN interactions sourced from Facebook (i.e, 

20.59% of all interactions processed), most of which (n=395,112) were collected 

during the 2014 Scottish Independence Referendum. Larger numbers of Twitter 

tweet (n=768,927) and retweet (n=802,166) interactions (total n=1,571,093) were 

geoparsed by CLAVIN-rest but yielded a total of only 1,929,794 (n=953,433 and 

n=976,363, respectively) resolved locations, 87.54% of which (n=1,689,324) were 

found in the SCOT2014 data set, which features a higher proportion of Twitter 

retweets. Most locations resolved in retweets will, of course, be duplicates of 

locations found in the originating tweet. 

The ratio of resolved locations to interactions is, on average, higher (1:1.85 vs 

1:1.22) for the more recent SCOT2014 data set and is substantially higher (1:3.98) 

for Facebook posts. This is a significant finding as most academic studies examining 

OSN data source publicly-posted interactions more readily, cheaply or freely 

available from Twitter (Giardullo, 2016; Stock, 2018; Tufekci, 2014). Facebook 

posts, which make up a higher proportion of the SCOT2014 data set (12.12% of 
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total, vs. 3.33% US2012; Table 4-6, p165), offer significantly greater possibilities 

for text geoparsing than Twitter-sourced interactions. The longer message format 

of Facebook allows more text per record and, on average, ~4 locations are resolved 

for every interaction by CLAVIN-rest as against just ~1.2 for Twitter-based message 

text. Broadly similar results from GATEcloud text-mining corroborate these findings 

(Section 5.2.2.1, p193). 

Facebook contributes 842,502 interactions (Table 4-8, p170) to the combined 

US2012/SCOT2014 research data corpus, of which just 1,231 records (0.15%) are 

coordinate-geotagged. Twitter-sourced interactions are more numerous and 

contain higher percentages of coordinate-geotagged interactions (Table 4-8, p170) 

yet offer comparatively fewer detectable locations/message when geoparsed. 

Much less frequently used in most social media studies than Twitter data, with its 

lower cost, easy availability (Stock, 2018) and more obviously coordinate-geotagged 

nature, it appears that Facebook posts offer a richer seam for text-mining and 

geoparsing operations than Twitter tweets or retweets, whether these are 

coordinate-geotagged or not. Statistical tests demonstrating the significance of 

these findings, alongside results from the other NLP/geoparser systems discussed in 

this chapter, are presented in Section 5.3 (p219). 

5.2.3 RQ3 – Does NLP-detectable ‘geographicality’ in linked/shared 3rd party 

content increase in line with ‘spatiality’? 

The sharing of media, in the form of URL links to content posted elsewhere on OSN 

sites, or on 3rd party websites, is a key component of social media usage (Bartlett & 

Miller, 2013; Hermida, Fletcher, Korell, & Logan, 2012; Kamath, Caverlee, Cheng, & 

Sui, 2012). According to Bartlett & Miller (2013, p42), understanding media sharing 

‘helps identify influencers’, whose highly active sharing activities tend to drive 

‘subsequent traffic’ on OSN web sites. Identifying influencers has become especially 

relevant as traditional models of news publication and dissemination (e.g., buying a 

newspaper) are replaced by often free, frequently social, online ‘Internet news 
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market[s]’ (M. S. Weber & Monge, 2011) which ‘are changing the way individuals 

consume and share news’ (C. S. Lee & Ma, 2012). While research, especially in the 

communications literature (Section 2.5, p72), has addressed some of these 

changing behaviours, little is known about differential patterns of link sharing 

amongst differing types of spatially or geographically expressive OSN users. Do 

users posting with coordinate-geotags, for example, link to content containing 

more identifiable locational entities than other users? The following pages address 

this research question using NLP-based text-mining and SQL-based data-mining 

techniques. Results are reported for URL link sharing against the Geographicality 

Scores developed earlier in Section 4.6.1 (p164). 

The INTERACTIONS table holds several links columns; FB_LINK stores link URLs 

shared using Facebook; TW_LINKS and TW_RT_LINKS store Twitter tweet and 

retweet link URLs, respectively. Whenever one of these mutually exclusive fields is 

not null, a ‘flattened’ version of the original JSON array (as per earlier examples 

given in Table 4-4, p146) is stored in the LINKS_URL field of DataSift’s CSV file, 

taking the form, e.g., for an array of 3 links: 

[“URL1”,”URL2”,”URL3”] 

Altogether, 3,281,150 records (40.03% of all interactions) have a non-null 

LINKS_URL field. Because each non-null value may contain an array of length n, 

each array must be transposed into n rows, using regular expressions (REGEXP) in 

SQL (Oracle, 2016a) to create a new table for AlchemyAPI processing (Appendix 11 

listing 29, p488). This table holds 3,485,840 records, i.e. some interactions mention 

multiple URLs. Table 5-6 (p207) shows how these linked URLs are split amongst 

coordinate and non-coordinate-geotagged interactions sampled from the two OSN 

sources (by subtype) for the four Streams recorded in 2012 and 2013-2014. 
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Table 5-6 – US2012/SCOT2014: Number and percentage of linked URLs by Stream, OSN 
source and subtype (FB=Facebook, TW=Tweet, RT=Retweet) created by non-coordinate-

geotagging and coordinate-geotagging users  

NOT GEOTAGGED FB % FB TW %TW RT %RT TOTAL % TOTAL 

US2012_GEO 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

US2012_NON_GEO 20,602 2.63% 182,456 11.89% 161,107 13.80% 364,165 10.45% 

US2012_NON_GEO_HISP 13 0.00% 3,694 0.24% 1,475 0.13% 5,182 0.15% 

SCOT2014 762,552 97.31% 1,317,646 85.87% 990,803 84.85% 3,071,001 88.10% 

SUBTOTAL 783,167 99.94% 1,503,796 98.00% 1,153,385 98.77% 3,440,348 98.69% 

GEOTAGGED FB % FB TW %TW RT %RT TOTAL % TOTAL 

US2012_GEO 0 0.00% 13,145 0.86% 0 0.00% 13,145 0.38% 

US2012_NON_GEO 0 0.00% 1,273 0.08% 795 0.07% 2,068 0.06% 

US2012_NON_GEO_HISP 0 0.00% 15 0.00% 0 0.00% 15 0.00% 

SCOT2014 464 0.06% 16,224 1.06% 13,576 1.16% 30,264 0.87% 

SUBTOTAL 464 0.06% 30,657 2.00% 14,371 1.23% 45,492 1.31% 

TOTAL 783,631 22.48% 1,534,453 44.02% 1,167,756 33.50% 3,485,840 100.00% 

 

Subtotals in Table 5-6 show that the vast majority of links (98.69%) are created by 

non-coordinate-geotagging users, responsible for all bar 45,492 of the total number 

of 3,485,840 linked/shared URLs in the research data corpus. Furthermore: 

• Links sourced from Facebook interactions account for 22.48% (n=783,631) 

of all links but are sourced overwhelmingly (97.37%) from the SCOT2014 

Stream, with just 2.63% of all Facebook links recorded during the 2012 US 

Presidential Election data collection exercise. Of these, none were recorded 

in the exclusively geographical Stream US2012_GEO (which consists of 

Twitter tweets only) and just 13 came from the geographically agnostically 

sampled Stream US2012_NON_GEO_HISP. Only 464 links from 

coordinate-geotagging Facebook users are present in the research data 

corpus, all sampled during the SCOT2014 event. 

• Links sourced from Twitter interactions account for 77.52% of all links 

(n=2,702,209) comprised 44.02% of tweets (n=1,534,453) and 33.50% 

(n=1,167,756) of retweets: 
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o The SCOT2014 Stream again contributes most linked/shared URL 

records (n=2,353,477; 87.10%) and just 29,800 of these links were 

created by coordinate-geotagging users.  

o In the US2012 event most linked/shared URLs (n=364,165; 10.45% 

of all links) were recorded in the US2012_NON_GEO Stream, set up 

without the requirement to sample exclusively coordinate-

geotagged interactions (Appendix A7.2.2, p433). Numbers and 

percentages of URLs linked and shared in other Streams, whether 

coordinate-geotagged or not, are low. 

• Altogether 45,028 URLs have been linked or shared in coordinate-geotagged 

Twitter tweets (n=30,657) or retweets (n=14,371). Added to the 464 links 

shared in coordinate-geotagged Facebook posts just 45,492 links (or 1.31% 

of all 3,485,840 links) have been created by coordinate-geotagging users. 

It is apparent that coordinate-geotagging users, according to the counts and 

percentages in Table 5-6 (p207), make far fewer URL link shares than non-

coordinate-geotagging OSN users. This finding has not been reported elsewhere. 

The top 20 World Wide Web domain names referenced, by number of links for all 

interactions in the US2012 data set, are shown in Table 5-7 (p209). Counts have 

been generated using SQL (Appendix 11 listing 30, p488) and results are ranked by 

count, at domain-level, of links from interactions created without, and with, 

Latitude and Longitude coordinates. A similar ranking, for the SCOT2014 data set, 

is shown in Table 5-8 (p210). In each electoral event, there is considerable overlap 

between the set of popular linked domains recorded in OSN interactions made 

without, or with, coordinates. However, disparities in the order of the rankings also 

exist, along with higher order preferences amongst coordinate-geotaggers to link to 

some domains (e.g., yatown.com in the US2012 case; dk.pairsonnalites.org in the 

SCOT2014 case) that do not appear at all in the top 20 rankings for non-

coordinate-geotagged interactions. 
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Table 5-7 – US2012: Top 20 Domains and number of links for those interacting without and 
with coordinate-geotags (including retweets) 

 
US2012 links without coordinates US2012 links with (any) coordinates 

Position Domain Number Domain Number 
1 www.huffingtonpost.com 14,395 instagram.com 1,976 
2 www.youtube.com 14,109 www.youtube.com 861 
3 instagram.com 10,651 www.huffingtonpost.com 694 
4 www.breitbart.com 10,192 www.twitlonger.com 241 
5 www.washingtonpost.com 7,552 www.politico.com 240 
6 thinkprogress.org 6,317 www.washingtonpost.com 236 
7 twitpic.com 5,148 thinkprogress.org 223 
8 www.facebook.com 4,659 www.breitbart.com 210 
9 www.barackobama.com 4,350 twitpic.com 180 

10 www.politico.com 4,303 twitter.com 146 
11 www.foxnews.com 3,982 www.foxnews.com 137 
12 www.dailykos.com 3,624 www.buzzfeed.com 131 
13 edition.cnn.com 3,527 www.barackobama.com 126 
14 www.motherjones.com 3,447 yatown.com 119 
15 news.yahoo.com 3,446 www.motherjones.com 116 
16 dailycaller.com 3,393 myloc.me 114 
17 www.theblaze.com 3,012 www.argojournal.com 95 
18 www.reuters.com 2,854 politicalticker.blogs.cnn.com 92 
19 twitchy.com 2,792 www.dailykos.com 87 
20 www.twitlonger.com 2,448 www.nytimes.com 83 

 

Yatown.com was a ‘neighborhood social network that connects individuals with 

their neighbors, and allows them to share information’ (Crunchbase, 2018). Now 

closed, the website might well have been of interest to coordinate-geotagging users 

linking to locally-relevant content during the 2012 US Presidential Election. The 

Pairsonnalites.org website, regularly linked to by coordinate-geotagging users 

during the 2014 Scottish Independence Referendum, is a more puzzling inclusion. 

This self-proclaimed ‘Nordic’ but US-registered (ICANN, 2018) website, which is still 

online, describes itself as a blog ‘Keeping up-to-date on social exclusion worldwide’ 

and featured many articles in its ‘Nordic | Scotland’ edition covering Scottish 

Independence during 2014. 
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Table 5-8 – SCOT2014: Top 20 Domains and number of links for those interacting without 
and with coordinate-geotags (including retweets) 

 
SCOT2014 links without coordinates SCOT2014 links with (any) coordinates 

Position Domain Number Domain Number 
1 www.facebook.com 410,204 www.youtube.com 2,826 
2 www.bbc.co.uk 203,250 dk.pairsonnalites.org 2,050 
3 www.youtube.com 196,966 www.theguardian.com 2,004 
4 www.theguardian.com 149,192 instagram.com 1,536 
5 www.blackfarce.com 91,531 www.scotsman.com 1,238 
6 www.telegraph.co.uk 75,836 www.bbc.co.uk 1,196 
7 www.scotsman.com 62,779 www.heraldscotland.com 1,141 
8 www.heraldscotland.com 53,293 www.telegraph.co.uk 904 
9 www.independent.co.uk 41,486 www.independent.co.uk 571 

10 www.dailyrecord.co.uk 38,292 path.com 538 
11 fw.to 33,732 fw.to 537 
12 news.google.com 32,311 www.dailyrecord.co.uk 447 
13 itunes.apple.com 31,034 www.buzzfeed.com 410 
14 www.huffingtonpost.co.uk 27,910 www.huffingtonpost.co.uk 374 
15 www.snp.org 25,075 www.facebook.com 372 
16 twibbon.com 23,403 twitter.com 365 
17 www.dailymail.co.uk 22,245 www.dailymail.co.uk 322 
18 news.stv.tv 20,899 www.trendinalia.com 277 
19 www.twitlonger.com 20,597 wingsoverscotland.com 277 
20 www.nytimes.com 20,534 blogs.wsj.com 276 

 

While this analysis shows some differences in terms of domain, or website level, 

destinations from link shares it cannot reveal anything about the content found at 

individual linked and shared URLs. AlchemyAPI, the Cloud-hosted NLP service (IBM, 

2017a, 2017b) used to detect locations in four tranches of interaction message text 

(Section 5.2.2.2, p198), has also been used to determine how many mentions of 

geographical entities can be detected in linked/shared URL content during the 

US2012 and SCOT2014 campaigns. This work builds on the ‘system prototype for 

knowledge discovery from social media’ presented by Croitoru et al. (2013) to 

create new types of geographically-relevant results that have not previously been 

reported. While Croitoru et al.'s (2013) Geosocial gauge could interrogate social 
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media messages from a number of platforms, ‘starting with Twitter and Flickr’, it 

did not branch out to consider linked/shared URL content. 

As the 3,485,840 links in the database include many duplicates, mainly due to 

retweeting, a table listing distinct links was created using SQL (Appendix 11 listing 

31, p489) to be used as a ‘queueing’ table for AlchemyAPI processing. The column 

ENTITY_JSON, a JSON-constrained Character Large Object (CLOB) field to store 

AlchemyAPI responses, together with fields to uniquely identify rows and record 

processing date, enabled programmatic control of queue processing. The table 

stores 641,472 distinct linked/shared URLs, posted to AlchemyAPI servers using 

custom Ruby scripts (Appendix A10.4, p461) accessing data on the laptop host 

Oracle 12c database over TCP/IP and OCI8 middleware and executed periodically 

using the Linux cron job controller on a CentOS 7 virtual machine (Appendix 8, 

p436). 

Appendix A10.5 (p466) shows the JSON returned by AlchemyAPI NLP software 

when run against a CNN (Cable News Network) URL reporting the results of the 

2014 Scottish Independence Referendum. This is the 34th most shared link in the 

research data corpus, with 4,167 shares, and is still available online. The amount of 

augmented data returned by AlchemyAPI is substantial; 47 entities are detected in 

the HTML content at CNN’s URL, these entity types include Country, City and 

Person. In some cases, AlchemyAPI returns coordinates for identified entities in 

the JSON path entities.disambiguated.geo. In other cases, links to 

authoritative sources which store geographical information (e.g., GeoNames) are 

returned in the JSON path entities.disambiguated.geonames. Table 5-9 

(p212) shows the breakdown of entity type, relevance, text, count and geo 

for the JSON returned by AlchemyAPI against CNN’s URL. 

Using query capabilities built into Oracle 12c (Oracle, 2014a) a relational view was 

built over the path elements of the JSON returned from AlchemyAPI output, 

including the NESTED PATH represented by the array entities shown in 
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Appendix A10.5 (p466). The view, defined in SQL (Appendix 11 listing 32, p489), had 

to incorporate the IS JSON STRICT clause (Maram, 2017) in order to enforce 

strict validation of JSON. If not, SQL queries run against the view (counts, attempts 

to export to CSV etc.) would fail if any one record contained malformed JSON. 

The view exposes 7,159,609 entities from the 641,472 distinct URLs passed through 

AlchemyAPI. Querying the view in SQL it is possible to select key entities for a given 

URL (Table 5-9 lists key features from the CNN URL whose AlchemyAPI JSON is 

shown in Appendix A10.5, p466), the entire data set (Figure 5-8, p215), or a subset 

of it. In Table 5-9 only 2 of the 47 detected entities have disambiguated.geo 

paths and corresponding Latitude and Longitude coordinates in JSON, the ‘Scottish 

Parliament’ and ‘Strichen’. This City entity type is, indeed, mentioned in the CNN 

article (McKirdy, Smith-Spark, & Robertson, 2014), where ‘Scotland's First Minister 

Alex Salmond, who has led the pro-independence "Yes Scotland" campaign, cast his 

ballot Thursday morning in the village of Strichen, Aberdeenshire.’ 

Table 5-9 – Entities, presented in tabular form, detected by AlchemyAPI against CNN’s 
Scottish Independence Referendum results page 

type relevance count text geo 
Country 0.813336 22 Scotland (null) 
City 0.436839 6 Glasgow (null) 
City 0.408424 5 Edinburgh (null) 
Company 0.321778 4 CNN (null) 
Person 0.321343 3 Alex Salmond (null) 
Country 0.288505 3 United Kingdom (null) 
Person 0.284499 2 Prime Minister David Cameron (null) 
City 0.260409 2 Edinburgh (null) 
StateOrCounty 0.233592 2 Aberdeenshire (null) 
Region 0.227693 2 Northern Ireland (null) 
Country 0.222848 2 Wales (null) 
Organization 0.222649 1 Scottish Parliament 55.95194 -3.17513 
Country 0.220393 2 England (null) 
JobTitle 0.219891 1 Prime minister (null) 
Person 0.218625 2 Sue Bruce (null) 
JobTitle 0.21754 2 officer (null) 
Person 0.212998 1 Prime Minister Gordon Brown (null) 
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City 0.208436 1 Dundee (null) 
FieldTerminology 0.207396 1 oil-rich city (null) 
Organization 0.206967 1 Glasgow City Council (null) 
City 0.196357 1 Aberdeen (null) 
Person 0.191401 1 Phil MacHugh (null) 
Person 0.188891 1 Alistair Darling (null) 
Person 0.187902 1 Nic Robertson (null) 
Organization 0.18525 1 EU (null) 
Person 0.184526 1 Mary Pitcaithly (null) 
City 0.183566 1 Hong Kong (null) 
City 0.183279 1 Dumfries (null) 
Person 0.181844 1 Angus (null) 
City 0.179558 1 London (null) 
Region 0.177794 1 East Dunbartonshire (null) 
Crime 0.177649 1 fraud (null) 
Person 0.174821 1 Euan McKirdy (null) 
City 0.174539 1 Kirkcaldy (null) 
City 0.173872 1 Galloway (null) 
City 0.172553 1 Strichen 57.5865 -2.0904 
Person 0.170637 1 Laura Smith-Spark (null) 
Person 0.163373 1 Richard Allen Greene (null) 
Person 0.153864 1 Greg Botelho (null) 
Person 0.144819 1 Lindsay Isaac (null) 
Quantity 0.144819 1 17-year (null) 
Quantity 0.144819 1 46% (null) 
Quantity 0.144819 1 54% (null) 
Quantity 0.144819 1 75% (null) 
Quantity 0.144819 1 80% (null) 
Quantity 0.144819 1 86% (null) 
Quantity 0.144819 1 8% (null) 

 

While some other obviously geographical features (e.g., the City entities 

‘Glasgow’ and ‘Edinburgh’) were correctly identified by AlchemyAPI, and 

disambiguated, the service does not always return coordinates in the 

disambiguated.geo JSON path. Altogether, AlchemyAPI returned coordinates 

for 182,619 records; 2.55% of all 7,159,609 entities identified in the set of 641,472 

distinct linked URLs. These geotagged records are plotted in Figure 5-7 (p214), and 

represent the readily-mappable output of AlchemyAPI-based text-mining of all 
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linked/shared URL content deposited by users during the US2012 and SCOT2014 

electoral events. 

 

Figure 5-7 – US2012/SCOT2014: Disambiguated geographic coordinates identified by 
AlchemyAPI in 641,472 distinct link URLs colour-coded by entity type 

The number of mappable entities detected by AlchemyAPI could be increased, by 

up to 433,846 records, if disambiguated.geonames were post-processed 

against the GeoNames (2016) gazetteer. However, to test RQ3, it is more useful to 

understand the distribution of entity types by Geographicality Score; i.e., do the 

most geographic coordinate-geotagging users link to the most geographically 

expressive online content such as, for example, news articles containing multiple 

toponymic references? Across all linked/shared URLs the most-detected entities 

(Figure 5-8, p215) are of type Person followed by Organization, 

Countries, Quantities and Companies.  
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Figure 5-8 – US2012/SCOT2014: Number of distinct entities by type identified by 
AlchemyAPI in 641,472 distinct link URLs processed by the service 

The top 10 most frequently identified entity types Person and Organization, 

together with top 10s for the three most frequently detected geographical entity 

types (Country, City and StateOrCounty) are shown in Figure 5-9 (p216). 

Key political figures, such as Alex Salmond, Barack Obama and Alistair Darling 

feature prominently, as do organizations including the SNP, EU (European Union) 

and GOP (Grand Old Party; Republicans). These named entities were, of course, 

frequently mentioned during online coverage of the two electoral contests chosen 

as case studies in this research (Section 4.2.4, p126). 
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Figure 5-9 – US2012/SCOT2014: Top 10 entities for the two most detected entity types 
(‘Person’ and ‘Organization’) and three geographical entity types (‘Country’, ‘City’, 

‘StateOrCounty’) identified by AlchemyAPI in 641,472 distinct link URLs 
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Key toponymic mentions, as expected, include Scotland, UK, United States, US and 

several major cities either side of the Atlantic including London, Edinburgh, 

Glasgow, Washington, New York and Chicago. States or Counties identified by 

AlchemyAPI are exclusively US-based and include Ohio, Florida, California and 

Massachusetts; either key swing or highly-populous states or, in the case of 

Massachusetts, the home state of Presidential Candidate Mitt Romney. Entities 

identified by AlchemyAPI NLP software in linked URL content clearly reflect 

contemporary commentary found, and shared, online at the time of the US2012 

and SCOT2014 campaigns. Even the initially puzzling inclusion of Benghazi, as the 

eighth most-frequently identified city entity in Figure 5-9 (p216), can be explained 

by an attack against the US Consulate in that Libyan city which took place in 2012, 

fallout from which was widely viewed as a potentially ‘game-changing’ political 

moment during the course of the 2012 US Presidential Election (McGreal, 2012).  

Data from AlchemyAPI text-mining of ~650,000 linked/shared URLs offers an 

accurate and highly searchable reflection of contemporaneous online text-based 

content surrounding US2012 and SCOT2014 events. By joining the AlchemyAPI 

JSON tables and relational views stored in Oracle 12c to views of Geographicality 

Scores at interaction and user levels (Section 4.6.1, p164) it is possible to determine 

whether patterns of link sharing by numbers of detected geographical entities in 

URL content differ according to Geographicality Score, answering RQ3. This metric 

is calculated as the average number of mentions of toponymic or coordinate 

geography (‘geo-entities’) detected in linked/shared URL content by AlchemyAPI 

NLP software at interaction (Appendix 11 listing 33 and 35, p489) and modal user 

levels (Appendix 11 listing 34 and 36, p490). Figure 5-10 (p218) shows the average 

number of geo-entities detected per interaction by AlchemyAPI using this logic. This 

count is cross-tabulated against grouped Geographicality Scores calculated earlier 

for each interaction.  
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Figure 5-10 – Average number of toponymic or coordinate mentions identified by 
AlchemyAPI in linked URLs by grouped Geographicality Score at interaction level 

 

Figure 5-11 – Average number of toponymic or coordinate mentions identified by 
AlchemyAPI in linked URLs by grouped Modal Geographicality Score at user level 
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All classes at interaction level exhibit similar average numbers of geo-entities 

detected in linked/shared URL content. At user level (Figure 5-11, p218), averaging 

numbers of geo-entities detected by AlchemyAPI in linked/shared URLs for all links 

made by each user, cross-tabulated against the modal Geographicality Score for 

each user, the distribution differs. Users with a zero Geographicality Score (no PGI 

metadata; mainly Facebook users) link to content containing, on average, 16.28 

AlchemyAPI-detectable geo-entities in their linked/shared URLs. Users with some 

PGI metadata (classes 1-8 in Figure 5-11) link to content containing, on average, 

21.98 geo-entities. Amongst coordinate-geotagging users who tweet (100+) or 

retweet (200+) the number of AlchemyAPI-detectable geo-entities in linked/shared 

URL content is lower, at 12.56 and 7.88 detected geo-entities per user respectively. 

This analysis shows that NLP-detectable ‘geographicality’ in linked/shared URL 

content does not increase in line with ‘spatiality’; the most spatially expressive 

coordinate-geotagging users do not link to the most toponymically expressive 

content. Users tweeting, retweeting or posting with coordinate-geotags are not 

only much less likely to link to external content altogether (Table 5-6, p207) but the 

content they link to contains fewer mentions of NLP-detectable geo-entities than 

that shared by non-coordinate-geotagging users. This is an original result which has 

not been reported elsewhere in the scientific literature. 

5.3 Statistical tests 

Summary results from Welch’s paired T-tests (Section 4.5.3, p163) comparing the 

distribution of numbers of toponymic mentions detected by the geoparsers used to 

examine the message text and linked/shared URL content of coordinate-geotagged 

and non-coordinate-geotagged interactions, and coordinate-geotagging and non-

coordinate-geotagging users, are presented in Table 5-10 (US2012, p220) and 

Table 5-11 (SCOT2014, p220). The tables summarise the statistical significance of 

differences in numbers of toponyms detected in geotagged and non-geotagged 
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Facebook posts, Twitter tweets and retweets, at both interaction and user levels, by 

each NLP/geoparser used. 

Table 5-10 – US2012: Summary statistics of Welch’s paired T-tests for numbers of detected 
toponyms in geotagged/non-geotagged message text and linked/shared URLs at interaction 

and user levels by OSN type/subtype and parser 

LEVEL US2012 - INTERACTION LEVEL 
OSN TYPE Facebook post Twitter tweet Twitter retweet 
PARSER t > ±2 p < .05 t > ±2 p < .05 t > ±2 p < .05 
GATEcloud NA NA     
AlchemyAPI       
CLAVIN-rest NA NA     
AlchemyAPI (URLs) NA NA     
LEVEL US2012 - USER LEVEL 
OSN TYPE Facebook post Twitter tweet Twitter retweet 
PARSER t > ±2 p < .05 t > ±2 p < .05 t > ±2 p < .05 
GATEcloud NA NA     
AlchemyAPI       
CLAVIN-rest NA NA     
AlchemyAPI (URLs) NA NA     

 

Table 5-11 – SCOT2014: Summary statistics of Welch’s paired T-tests for numbers of 
detected toponyms in geotagged/non-geotagged message text and linked/shared URLs at 

interaction and user levels by OSN type/subtype and parser 

LEVEL SCOT2014 - INTERACTION LEVEL 
OSN TYPE Facebook post Twitter tweet Twitter retweet 
PARSER t > ±2 p < .05 t > ±2 p < .05 t > ±2 p < .05 
GATEcloud       
AlchemyAPI       
CLAVIN-rest       
AlchemyAPI (URLs)       
LEVEL SCOT2014 - USER LEVEL 
OSN TYPE Facebook post Twitter tweet Twitter retweet 
PARSER t > ±2 p < .05 t > ±2 p < .05 t > ±2 p < .05 
GATEcloud       
AlchemyAPI       
CLAVIN-rest       
AlchemyAPI (URLs)       
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In Table 5-10 and Table 5-11 a green tick indicates that the null hypothesis can be 

rejected, i.e. that differences do exist in the number of toponymic mentions 

detected in geotagged/non-geotagged interaction message text or linked/shared 

URL content. In 27 out of 40 cases, like-for-like comparisons are statistically 

significant (t > ±2) with >95% confidence. In 6 other cases statistics could not be 

calculated owing to a complete lack of coordinate-geotagged Facebook posts in the 

US2012 data set (marked NA in Table 5-10, p220). This finding is itself significant, 

and must reflect DataSift’s changing access to Facebook-sourced OSN interactions 

over time, as both coordinate-geotagged and non-coordinate-geotagged Facebook 

interactions are present in the SCOT2014 data set (Table 5-11, p220). During the 

2014 Scottish Independence Referendum event, sampled by one consistent and 

long-running 1:1 DataSift Stream, most like-for-like comparisons of numbers of 

toponymic detections (e.g., in Facebook posts, Twitter tweets or retweets by 

GATEcloud, AlchemyAPI or CLAVIN-rest) are statistically significant. 

Detailed results show that coordinate-geotagged interactions hold, and coordinate-

geotagging users make, fewer toponymic mentions than their non-coordinate-

geotagged/tagging peers (Appendix A12.2, p502). 

5.4 Software evaluation 

Results obtained from three, quite different, computerised NLP/geoparsing systems 

are presented above. Several other geoparsers, such as Baleen (Defence Science 

and Technology Laboratory, 2015) and the Edinburgh Geoparser (Language 

Technology Group, 2014), were also tested but either failed to compile or could not 

read the input files and, hence, could not be properly evaluated (Section 4.4.1.4, 

p157). The difficulties encountered here in installing and running open-sourced 

geoparsing software have also been encountered by others. Gritta et al. (2018, 

p619), for example, comment on the ‘prohibitively cumbersome [software] set up’ 

involved in their tests of five geoparsing systems, reporting ‘substantial disparity’ in 
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terms of software availability, installability and support. The following section gives 

a comparative evaluation of the three systems used in this research. 

5.4.1 Comparative evaluation 

All NLP/NER-based entity extraction engines to differing degrees, can easily be 

fooled by input sentence structure; a significant problem when much of the text in 

the research data corpus is terse and ungrammatical. Consider the following (lucid) 

sentences mentioning locations: 

• I used to live in London 

• After visiting Newcastle I went to Durham 

• I went past Stonehenge the other day 

• I'd love to know what's happening in Newquay tonight 

These locations, with many country alternatives (e.g., London, Texas), all appear in 

the GeoNames gazetteer. The CLAVIN online demonstrator (Berico-Technologies, 

2018) successfully resolves and provides coordinates for the locations ‘City of 

London’ and ‘Newquay’; a success-rate of 40%. Changing the second sentence to 

read ‘After visiting Newcastle I went over to Durham’ adds ‘County Durham’ to the 

list of resolved locations, boosting the success rate (allowing for semantic 

differences between County Durham and the City of Durham) to 60%. Changing the 

third sentence to ‘I went to Stonehenge the other day near Amesbury’ resolves 

Amesbury but continues to miss Stonehenge. Newcastle is missed every time, 

although if the sentence is changed to ‘I lived in Newcastle and often went to 

Durham’ Newcastle is resolved but Durham is not. CLAVIN-rest, compiled on a 

Centos 7 virtual machine, resolves London, Durham and Newquay in the initial 

sentence and returns coordinates in JSON, finds Amesbury (but not Stonehenge) 

when the sentence is modified and finds both Newcastle and Durham in the final 

iteration of sentence structure. 
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The AlchemyAPI demonstrator (IBM, 2018) does somewhat better, finding all four 

location entities except Stonehenge in the original sentence. It does not return 

coordinates for any of these locations in JSON and, while it misses Stonehenge as a 

‘location entity’, it does recognise it as a ‘keyword’. GATE Developer desktop 

software also finds all location entities, except Stonehenge, when presented with 

the initial sentence structure and the online GATEcloud demonstrator (GATE, 2018) 

produces the same result. Neither desktop or Cloud variants of GATE return 

coordinate data. Like AlchemyAPI, TwitIE on GATE and GATEcloud is a specialist 

NLP/NER system tuned to extract multiple entity types from text. While 

GATE/GATEcloud do not return coordinates by default alongside identified location 

entities, Univerity of Sheffield developers are working on this functionality in future 

releases by creating bespoke software processing pipelines (Roberts & Tear, 

personal communication, 2017). As an open-source product, GATE Developer 

desktop software is free to use. Running jobs on GATEcloud costs, but costs 

substantially less than it would on AlchemyAPI when processing large data sets, 

particularly for academic users, and has no daily rate restrictions (or ‘throttling’) for 

research use. 

In terms of speed, with the computing resources available (Appendix 8, p436), 

CLAVIN-rest offers the fastest solution for geoparsing, processing large files within 

minutes on a CentOS 7 virtual machine using a local copy of the GeoNames (2016) 

gazetteer database. However, CLAVIN-rest only geoparses, and does not resolve 

any other entities in text. Resolved locations can be used to add some value to 

maps, by showing additional locations found within text (e.g., Figure 5-12 and 

Figure 5-13, p224), but the software cannot identify people, URLs, quantities, 

companies, key words or sentiment etc. or provide any additional contextual 

information. Knowing that a place is mentioned, even with the addition of 

coordinates, is not as valuable as knowing why it is mentioned. CLAVIN-rest 

therefore adds less inferential value to analyses than the other, more general-

purpose, NLP/NER systems evaluated here. 



Geotagging matters? 

224 

 

 

Figure 5-12 – US2012: World map showing coordinate geotagged interactions (orange 
markers) and geoparsed locations (blue markers) identified by CLAVIN-rest 

 

Figure 5-13 – SCOT2014: World map showing coordinate-geotagged interactions (orange 
markers) and geoparsed locations (blue markers) identified by CLAVIN-rest 

Given the ≤140-character message length limit in ~90% of the research data corpus, 

comprised largely of Twitter tweets and retweets (Table 4-8, p170), it is sensible to 

adopt an NLP solution aimed specifically at microblog text. As GATE’s development 

team have noted (Derczynski et al., 2013, p21), ‘Using semantic technologies for 

mining and intelligent information access to microblogs is a challenging, emerging 

research area. Unlike carefully authored news text and other longer content, 
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tweets pose a number of new challenges, due to their short, noisy, context-

dependent, and dynamic nature.’ The median length of all user interactions in the 

research data corpus is 127 characters, falling precisely into the ‘short, noisy’ 

category identified by Derczynski et al. (2013). 

While the different NLP-based NERs evaluated here have different strengths, 

weaknesses and costs when used as geoparsers they all point to a similar result: the 

most geographic coordinate-geotagging OSN users are somewhat less 

geographically expressive when it comes to mentioning NLP/NER-detectable 

toponymic locations in their online message text or linked/shared URL content. This 

conclusion has not been reached elsewhere.  

5.5 Summary 

In a geographical context, coordinate spatiality in Twitter and Facebook 

communications is characterised by a ‘lack of user adoption of geo-based features 

[which suggests that] the promise of [OSN data] as a location-based sensing system 

may have only limited reach and impact’ (Z. Cheng et al., 2010, p1). Just as massive 

data sets open up the possibility for straightforward mapping of many hundreds of 

thousands, or millions, of human interactions it is apparent that most of these 

social media interactions are not imprinted with spatial coordinates. Furthermore, 

the results presented in this chapter show that spatialised social media message 

text, or linked/shared URL content, deposited on Facebook and Twitter by 

coordinate-geotagging users is not toponymically representative of the majority of 

interactions created on these platforms by non-coordinate-geotagging users. In 

summary: 

1. Fewer toponymic mentions are found in the message text of coordinate-

geotagging users’ interactions, whether on Facebook or Twitter. 

2. Coordinate-geotagging users make fewer links to 3rd party content in their 

interactions than others on both Facebook and Twitter. 
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3. The linked/shared content of coordinate-geotagging users contains fewer 

toponymic mentions than that shared by others on both platforms. 

4. Coordinate-geotagging users link to and share content from largely 

overlapping, but different, sets of Web domains to others. 

The results of this research: 

• Demonstrate the validity of the methodological approach adopted, and 

methods used, to examine politically discursive online social media 

interactions collected during two separate electoral events, using two social 

media data sources and three alternative NLP/geoparsing systems. 

• Refute the Geographicality Assumption tested here that coordinate-

geotagging users are the most geographically expressive of all OSN users.  

These findings suggest that tracking or mapping the spread of political opinion or 

(mis)information by searching for toponymically-infused message text or 

linked/shared URL content, deposited solely by coordinate-geotagging OSN users of 

two major social media platforms during electoral campaigns, will be inaccurate. 

The implications of this conclusion are discussed in more depth in the following 

chapter, alongside several additional findings resulting from the exploratory 

spatiotemporal research methodology adopted throughout this work. 
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6 DISCUSSION AND ADDITIONAL FINDINGS 

6.1 Introduction 

The World Wide Web is a vast decentralised content repository, built upon an 

interconnected network of computing infrastructure originally designed to 

withstand full-blown nuclear conflict (Salus, 1995). Much of the Web’s content 

consists of unstructured text, predominantly created by human hands. Scharl (2007, 

p6), citing Delboni, Borges, & Laender (2005), has suggested that ‘At least 20 

percent of Web pages contain easily recognizable and unambiguous geographic 

identifiers.’ A broadly similar percentage is evident in social media message text, 

where around 25% of the ~8m interactions in the research data corpus are found to 

contain toponymic references to place (Section 5.2.2, p190). Few records (~1-2%) 

are spatially imprinted with Latitude and Longitude pairs (Table 4-8, p170) while 

statistically significant results show that coordinate-geotagged interactions contain 

fewer toponymic mentions in message text and linked/shared URL content than 

that found in corresponding, non-coordinate-geotagged, social media data. 

Place detection in OSN interactions may be attempted using the LIKE or 

CONTAINS functions in SQL and a full-text index (Oracle, 2012) on interaction 

content. Searching for Perth, for example, finds five mentions of the Fair City during 

the 2012 US Presidential Election, with many more occurrences (n=560) found 

during the 2014 Scottish Independence Referendum. The SQL query works 

(Appendix 11 listing 38, p491), but the approach does not work well for all places: 

• Many identical place names appear both within-country (e.g., Newport, UK) 

and across-country (e.g., Perth, Scotland; Perth, Western Australia). 

Computerised searching for string literals, or matching to published 

gazetteers, may mismatch common place names. 
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• Some place abbreviations (e.g., ‘IN’ for Indiana, ‘OH’ for Ohio), however 

cased, are commonly used in OSN message text. A search against message 

text in the US2012 data set using the SQL phrase LIKE ‘% IN%’ returns 

11,320 OSN interactions, but not all of these refer to Indiana. 

• Computerised text-matching against very large gazetteers, e.g., the popular, 

open-source GeoNames (2016) database of over 11 million place names, 

may be attempted using looping PL/SQL programmes or pattern-matching 

database indices but is best attempted using specialist NLP/geoparsing 

software capable of breaking down terse or ungrammatical social media 

message text into parts of speech (POS; nouns, verbs, adverbs etc.), using 

these structures to determine likely location-bearing constructs in text. 

As Gritta et al. (2018, p603) have observed, ‘The ability to geo-locate events in 

textual reports represents a valuable source of information in many real-world 

applications such as emergency responses, real-time social media geographical 

event analysis, understanding location instructions in auto-response systems and 

more. However, geoparsing is still widely regarded as a challenge because of 

domain language diversity, place name ambiguity, metonymic language and limited 

leveraging of context.’ In this research, Natural Language Processing ‘pipelines’ 

including TwitIE (Bontcheva et al., 2013), AlchemyAPI (IBM, 2017a) and CLAVIN-rest 

(Berico-Technologies, 2014) have been used to search for geo-references within 

Twitter and Facebook message text and linked/shared URL content. The research 

demonstrates that coordinate-geotagging users are not always the most 

geographically expressive of all OSN users (Section 5.3, p219). The implications of 

this finding are discussed in the following section while Section 6.4 (p246), later in 

this chapter, presents the results of several further investigations conducted during 

this research, each of which shed additional light on the sometimes perplexing 

‘confounds and consequences’ (Pavalanathan & Eisenstein, 2015) of coordinate-

geotagged and non-coordinate-geotagged social media data. 
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6.2 Implications 

6.2.1 Key implication 

The key implication of this study, in the contemporary political context within which 

it is situated, centres around the efficacy of using coordinate-geotagged OSN 

interactions to geographically track, map or monitor the dispersal of opinion or 

(mis)information produced and shared online over social media during electoral 

campaigns. This may be illustrated through the logical progression below: 

• Various authors, as noted in the introduction to this thesis (p1), have 

suggested there are grounds for believing that geo-behavioural targeting 

may have impacted the outcome of the 2016 US Presidential Election and 

the 2016 UK European Union Membership Referendum. 

o Albright (2017), at the Tow Center for Digital Journalism, has found 

computer code revealing how geographical and behavioural 

targeting techniques were used by an employee of Cambridge 

Analytica to geolocate and mine Twitter data in 2016, which ‘shows 

the inner workings of client voter file geo-data “enrichment” and 

presumably automated voter database processing for clients by 

Cambridge Analytica.’ A snippet of this code with the programmer’s 

detailed comments is shown in Figure 6-1 (p233). 

o Documents laid before Congress by Facebook during the U.S. House 

of Representatives (2018c) Permanent Select Committee on 

Intelligence inquiry into Social Media Advertisements detail how 

~3,500 geo-behavioural campaigns were set up by Russian state-

sponsored actors using Facebook’s own campaign management and 

targeting facilities (Figure 6-2, p235). The New York Times (Collins, 

2018) has built a useful interactive web page around these data, 

allowing users to see what sorts of advertisements were being 
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shown on social media in 2015-17 to different age groups, in 

different regions of the US, with different interests. 

• This evidence builds a picture of how social media have been (mis)used to 

target and direct political, and often populist or inflammatory, material at 

voters in given areas. However, to date, there remains no compulsion for 

political parties, marketing companies or campaign teams in the US, UK or 

elsewhere to release this information. 

• Subsequently, electoral officials and researchers can only view the end 

results of marketing or (mis)information campaigns by searching for the 

spread of messages, content or URLs publicly-posted and shared on OSN 

platforms, blogs or websites. 

o While it is relatively straightforward to track the spread of messages 

or URLs amongst users of social network sites or, at least, those 

users (predominantly on Twitter) who publicly-post their messages, 

it is much more difficult to know where these users are located and, 

hence, whether geo-targeted messages are reaching, or possibly 

influencing, audiences in specific areas. 

• Coordinate-geotagged interactions, and coordinate-geotagging users, offer 

one mechanism through which accurate spatial tracking could be achieved. 

However, this research has shown that: 

o Few politically discursive OSN interactions are coordinate-geotagged 

(Section 5.2.1, p188) 

o Coordinate-geotagging users do not refer to locations in message 

text, or link to URLs referencing locations (which might have been 

targeted or promoted), as often as non-coordinate-geotagging users 

(Section 5.2.2, p190). 

o Coordinate-geotagging users do not share as much content, or quite 

the same sorts of content, as non-coordinate-geotagging users of the 

Twitter and Facebook platforms studied (Section 5.2.3, p205). 
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• Both of these conclusions, along with other results indicating probable 

youthful skewness and urban living amongst these users (Section 6.4.4, 

p262), suggest that coordinate-geotagged social media interactions from 

geotagging users, which comprise only a small 1-2% minority of all OSN 

messages, are not sufficiently representative to allow for accurate 

geographical tracking of the online dispersal of opinion or (mis)information 

disseminated during electoral campaigns. 

Steiger, de Albuquerque, et al. (2015, p826) have stated that across all application 

domains they reviewed, and particularly in disaster management, ‘georeferenced 

tweets provided accurate location information [with] study outcomes 

[demonstrating] a high spatiotemporal reliability and usefulness of tweets.’ The 

authors have suggested (p826) that ‘Earthquake detection from Twitter is one 

successful example in a number of reviewed studies where disaster events have 

been localized in a real-time manner, showing a high correlation in comparison with 

official earthquake sensor data. A similar outcome can be stated within the 

application of disease and health management. Tweets indicating disease incidents 

have shown a similar spatiotemporal distribution in comparison with official 

reports.’ In natural disaster, emergency or terrorism situations, or in use cases 

which examine large-scale population trends and movements, OSN data – mainly 

sourced from Twitter – have demonstrated high degrees of utility. When tracking 

the geographical spread of opinion or (mis)information online, or attempting to use 

messages or shared content posted on Twitter or Facebook to poll or predict 

political outcomes, the results are much more ambiguous (Section 7.3, p292). 

It is much easier to set up a geographically-targeted campaign, political or 

otherwise, on Twitter, Facebook, Instagram etc. than it is to use publicly-available 

OSN interaction (meta)data sourced from these platforms to accurately monitor 

and assess the reach of such a campaign. Figure 6-1 (p233) shows lines 191-239 of a 

401-line programme written in Python by Michael Phillips, an intern working for 
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Cambridge Analytica, whose GitHub repository was accidentally left open and 

whose work has been investigated by ‘Professor and researcher in news, 

journalism, and #hashtags’, Jonathan Albright (2017).  

""" 
This function is really the purpose of this script. 
Essentially what it does is:  
For each address in the addresses file, try to get an 
accurate lng/lat quickly (comparing available data 
from Aristotle/IG to the zip code file data to determine 
accuracy), but if we can't, we fetch it from ArcGIS. 
addresses is an array of addresses each in the form  
    , address_id, voter_id, AddressLine, ExtraAddressLine, 
HouseNumber, PrefixDirection, StreetName, Designator, 
SuffixDirection, ApartmentNum, Zip, ZipPlus4, City, County, 
CongressionalDistrict, State, latitude, longitude, 
ar_latitude, ar_longitude 
    only lines 5, 7, 8, 13, 16 are used though, the rest 
can be blank.   
    lines 17,18,19,20 are optional, they are the data from 
Aristotle and IG lat/lng data. 
     
_zips is an array of zip codes in the form: 
zip, city, state, latitude, longitude, timezone, dst 
    where latitude and longitude correspond to the center 
of the zip code.  
    note that zip codes should be in the same format as 
provided by the addresses file.  sometimes this means 
trimming leading zeroes.   
     
latlngFunc is the function you want to use to fetch 
lat/lngs that are not supplied in the addresses array.   
    getLatLngArcGIS is recommended due to accuracy and the 
fact that there is no usage restriction.   
     
The function returns an array which adds 2 extra columns to 
the original addresses array.  The extra columns are the 
accurate lat/lngs.  
Output is a little confusing, but the important bits are 
the fetch rate (basically dictates how quickly the function 
goes), 
    and the errors (which is going to be the number of 
address lines which we couldn't get accurate data for from 
any source.) 
********THINGS THAT CAN BE ADDED************* 
Right now the exception clause basically just says that the 
latlngFunc failed to find the address and give a valid 
lat/lng. 
    Instead, it could use googleMaps to fill in the field.  
It would have to be limited to 2500 uses in a day, but at 
the average hit rate for  
    ArcGIS, it would be difficult for it to fail 2500 times 
in a single day.  This would increase coverage to possibly 
100%, but if we did  
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    hit our googleMaps fetch limit, it could cause the 
program to crash or take virtually forever.   
     
   
""" 
def completeAddresses(addresses, _zips, latlngFunc): 
    completeAddrs = np.hstack((addresses, 
np.zeros([len(addresses), 2]))) 
    completeAddrs = pd.DataFrame(completeAddrs) 
    #create dictionary for zip lookups 
    zipsList = _zips[:,0].tolist() 
    latitudeList = _zips[:,3] 
    longitudeList = _zips[:,4] 
    latlngList = zip(latitudeList, longitudeList) 
    zipsDict = dict(zip(zipsList, latlngList)) 
     
    radius = 15 
     
     
    errorCount = 0 
    igHitNumber = 0 
    igMissNumber = 0 
    arHitNumber = 0 
    arMissNumber = 0 
    numberOfFetches = 0 
     
    for index, line in completeAddrs.iterrows(): 
 

Figure 6-1 – Detailed comments and snippet of ‘geo-data “enrichment” code’ created by 
Cambridge Analytica employee Michael Phillips (Sources: Albright, 2017; archive.today, 

2017) 

This computer code trawls Twitter data to match addresses and expands a list of 

sentiment-specific keyword groups or concepts which Albright associates with the 

2016 Trump campaign, e.g., ‘hilarySentiments’, ‘gunsSentiments’ etc. The code 

references Aristotle, an internal Cambridge Analytica system, and ‘IG’; an 

abbreviation for Instagram. ArcGIS, the Geographical Information System from ESRI 

(2018), is also referenced in the code along with comments referring to rate limits 

in the Google Maps API, also used to geocode social media data. The programme 

shows – as previous sections and programmatic listings in Appendices to this thesis 

also show – how computers, databases, systems and code may be used to 

interrogate and augment OSN data and how, in the case of Cambridge Analytica, 

this augmented database was used, to target political campaigns on voter_id 
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and geo-attributes including City, County, CongressionalDistrict and 

State.  

In an interview with The Guardian (Cadwalladr, 2018a) Christopher Wylie, the 

whistle-blower who helped bring the Cambridge Analytica scandal to light, 

describes how he ‘ended up creating “Steve Bannon’s psychological warfare 

mindfuck tool”.’ In the video which accompanies the piece, Wylie states that he and 

Cambridge Analytica were ‘playing with the psychology of an entire nation’, using 

data science and machine learning to ‘combine micro-targeting with new constructs 

from psychology’ to ‘build cultural weapons.’ Data harvested from Facebook, using 

Kogan’s online quiz app (Etter & Frier, 2018), had only ‘to touch a couple of 

hundred thousand people’, Wylie states in The Guardian (Cadwalladr, 2018a) 

interview, to fan out through Facebook’s friend network and ‘scale to the entire 

US’, collecting an estimated 50-60 million user profiles; a figure which later 

emerged as an under-estimate of the ~87 million profiles really ‘harvested’ by this 

operation (BBC News, 2018e). Personal data, including information about people’s 

Facebook Likes and Interests, were used to determine what ‘kinds of messaging’ 

individual voters were susceptible to and ‘where [they] were going to consume’ 

targeted messages. Teams of ‘creatives, designers and geographers’ were involved 

in making and targeting bespoke messages which, according to Wylie, ‘whispered 

into the ears’ of individual voters; pushing them towards specially created websites, 

blogs and content designed to reinforce messages and political standpoints. Tracing 

the source and tracking the consumption of such material is a necessity if free and 

fair democratic elections are to continue in an era in which, as a former chief of the 

UK’s General Communications Headquarters (GCHQ) has said, social media 

organisations ‘have huge power’ over governments (BBC News, 2018c). 

The growing ‘weaponisation’ of social media (Nissen, 2015) has become most 

visible in the US Central Intelligence Agency’s (CIA) detection of Russian state-
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sponsored involvement and interference in the 2016 US Presidential Election, in 

support of Presidential Candidate Donald Trump’s campaign. 

 

Figure 6-2 – Facebook campaign targeting parameters, and advertisement, for one of 
~3,500 campaigns/advertisements set up by Russian state-sponsored actors during the 

2016 US Presidential Election 

Figure 6-2 shows the targeting criteria used in one of the ~3,500 advertisements set 

up on Facebook and designed, according to the U.S. House of Representatives 
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(2018a) Permanent Select Committee on Intelligence, to ‘sow discord online’. In this 

operation ‘[Russian] Defendants, posing as U.S. persons and creating false U.S. 

personas, operated social media pages and groups designed to attract U.S. 

audiences. These groups and pages, which addressed divisive U.S. political and 

social issues, falsely claimed to be controlled by U.S. activists when, in fact, they 

were controlled by Defendants. Defendants also used the stolen identities of real 

U.S. persons to post on ORGANIZATION-controlled social media accounts [reaching] 

significant numbers of Americans for [the] purposes of interfering with the U.S. 

political system, including the presidential election of 2016’ (U.S. House of 

Representatives, 2018a, authors' capitalisation). Tracking this sort of interference in 

large social media data sets is not straightforward: 

• The cost of purchasing and consuming entire data streams may be 

prohibitive outside governmental or law enforcement agencies. 

• Platform operators’ advertisement placement and campaign management 

systems are unavailable to all, unless legally requested. 

• Platform operators’ privacy policies, in many cases, preclude access to all or 

most user data, or to some data points that would be highly useful. 

• Geographical tracking is hindered by redaction of IP addresses in metadata 

and low rates of coordinate-geotagging, typically just ~1-2%. 

• Spatialised interactions and the users who create them are not entirely 

representative of all OSN users, as this research has shown. 

Van Dijck (2014) has stated that Web users now accept that they ‘exchange’ their 

personal data for Web-hosted services including search, email and social media. 

Many users of these systems think that they are the customers of these services, 

even though they use them for free. However, the real customers of major Internet 

corporations including Facebook, Google and Twitter are the advertisers who pay to 

promote their content on these platforms, whether endorsing a product, a party, a 

candidate, an ideology or some form of misinformation. Much more transparency 
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in online advertising is desirable, particularly where it is used in support of political 

campaigning via highly-targetable social media networks. Policy recommendations 

in this area are discussed below (Section 6.3, p238) following a brief description of 

other, mainly technical, implications arising from this research. 

6.2.2 Other implications 

Several other implications, largely of a technical nature, flow from this research. 

These centre around: 

• Data availability – In 2012 and 2013-14 DataSift was used (Section 4.2.5, 

p134) to collect and store Twitter and Facebook data. DataSift no longer has 

access to any Twitter data (Lunden, 2015) but can still access data from 

Facebook. Platform operators’ policies, and growing regulatory imperatives 

to protect user privacy, may restrict such data availability in the future. 

• Computing infrastructure – Although challenging (Appendix 8, p436) it is 

possible for a single researcher to store and augment reasonably large 

volumes (~8m records) of social media ‘Big Data’. The data volumes and 

systems used here are not, however, fully representative of the difficulties 

to be expected when storing or analysing much larger data sets. 

• Computer software – This research presents results collated using three 

NLP/geoparsing systems (Section 4.4.1, p147) but many more are available. 

While there is considerable agreement between two of the systems used to 

geoparse interaction message text (TwitIE on GATEcloud and CLAVIN-rest) 

similar results might not be found using alternative software packages. 

These, and other, implications and observations are expanded upon in the 

concluding chapter (p286) of this thesis. The remainder of this chapter outlines 

policy recommendations stemming from this research, below, and details several 

other findings (Section 6.4, p246) relevant to the discussion. 
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6.3 Policy recommendations 

6.3.1 Background 

Ever more personal data are being deposited in the ‘corporate digital dossiers’ 

(Wyly, 2014) of giant Internet and Web-based businesses including, amongst 

others, Facebook, Google, Microsoft and Twitter. Not only have these corporations 

become increasingly dominant ‘but their online domination increasingly allows 

them to dictate terms’ particularly surrounding the dissemination of news (Tear & 

Southall, 2019, in press). While Google, Facebook and others, as Tear & Southall 

have noted, ‘do of course pass much of their income on to content providers, 

including editorially curated sources […] Facebook in particular is not simply 

directing users to newspaper sites but providing a “News Feed” where traditional 

media compete with lower-cost providers; and Google’s YouTube is somewhat 

similar. Where the content is simply entertainment, providing a platform for 

individual “creators” promotes diversity. However the lowest cost way to produce 

“news” is to invent it.’ 

Invented, fake or alternative news, which spreads particularly quickly online and via 

social media (Vosoughi et al., 2018), is thought to pose a real threat to both political 

processes and civil society. Persily (2017, p63) has stated that ‘Whereas the stories 

of the last two [US Presidential Election] campaigns focused on the use of new 

tools, most of the 2016 story revolves around the online explosion of campaign-

relevant communication from all corners of cyberspace. Fake news, social-media 

bots (automated accounts that can exist on all types of platforms), and propaganda 

from inside and outside the United States – alongside revolutionary uses of new 

media by the winning campaign – combined to upset established paradigms of how 

to run for president.’ Tackling these sorts of problems through policy will not be 

straightforward, particularly when other research (Müller & Schwarz, 2017) has 

shown how social media can ‘fan the flames of hate’ with ‘right-wing anti-refugee 

sentiment on Facebook [accurately] predict[ing] violent crimes against refugees in 



Geotagging matters? 

239 

 

otherwise similar [German] municipalities with higher social media usage [levels, 

suggesting] that social media can act as a propagation mechanism between online 

hate speech and real-life violent crime.’  

Politicians and the massive global corporations running some of the Web’s most 

popular sites, platforms and applications must tackle these problems. Promisingly, 

there are now signs that policy is developing in these areas. In the UK, Labour Party 

Leader Jeremy Corbyn has suggested that an ‘internet tax’ on tech companies could 

help create a ‘public interest media fund’ dedicated to investigative journalism (BBC 

News, 2018b). In the US, President Donald Trump has ‘warn[ed] Google, Facebook 

and Twitter’ about perceived political bias which, somewhat typically for the 

current Presidential incumbent, appears to centre around his own sensitivities 

towards stories from the ‘Fake News Media’ or ‘Negative Left-Wing Media’ 

appearing first in listings on these sites when searching online for ‘Trump news’ 

(BBC News, 2018g). As Taylor (2018) writing in The Guardian has pointed out, 

however, ‘political heat from Trump and the left may signal reckoning ahead’ for 

the Big Tech companies. 

From an electoral perspective it appears almost certain, in the UK at least, that 

online political marketing and spending will come under increasing scrutiny and 

control. The Electoral Commission (2018a) report on Digital campaigning, subtitled 

Increasing transparency for voters, has made nine key recommendations. In 

abridged form these include: 

1. Imprinting online material to say ‘who is behind [a political] campaign and 

who created it’; 

2. Improving spending regulations to ‘give more information about the money 

spent on digital campaigns’; 

3. Requiring campaigners to ‘provide more detailed and meaningful invoices 

from their digital suppliers to improve transparency’; 
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4. Suggesting social media companies ‘should work with’ the Electoral 

Commission to ‘improve their policies on campaign material and advertising 

for elections and referendums’; 

5. Clearly labelling election and referendum adverts on social media platforms 

to ‘make the source clear’; 

6. Clarifying that ‘spending on election or referendum campaigns by foreign 

organisations or individuals is not allowed’; 

7. Improving ‘rules and deadlines for reporting spending’ both during and after 

election and referendum campaigns, and; 

8. Increasing ‘the maximum fine [the Electoral Commission] can sanction 

campaigners for breaking the rules, and [strengthening] powers to obtain 

information outside of an investigation.’ 

9. Preventing ‘spending on election or referendum campaigns by foreign 

organisations or individuals.’  

All of these are sensible recommendations, but results from this research suggest 

additional regulatory and/or technical responses are desirable. Recommendations 

in these areas are discussed, in turn, below. 

6.3.2 Regulatory responses 

The operations of major social media networks, including Facebook and Twitter, 

and other ‘Internet giants’, including Google, Instagram, Microsoft etc., are not 

currently regulated – outside normal company legislation – despite these 

corporations wielding increasing influence in our ‘always-on’ societies (Reich, 2018). 

While external regulation is not, yet, enforced by national governments most large 

technology companies have ‘self-regulated’; historically in response to user-privacy 

concerns (Burkell, Fortier, Wong, & Simpson, 2014) and, more recently, following a 

series of significant ‘data misuse’ scandals (Digital Culture Media and Sport 

Committee, 2018). These self-regulatory effects have been most visible at 

Facebook, which has progressively introduced much more granular user control 
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over privacy settings protecting personal data (excepting various transgressions, 

discussed below), but also extend to several other social media platforms and 

popular Internet sites or applications, e.g., Google, Instagram and Snapchat 

(Iosifidis & Wheeler, 2016; Muhammad, Dey, & Weerakkody, 2018). Most 

enhancements to user privacy settings are designed to restrict what content is 

visible when publicly-posted online or shared, increasingly ‘locking-down’ access to 

material. Others have been designed to restrict access to social graph inter-

relationships via platform operator’s APIs; preventing, again with notable 

exceptions, extended traversal through social networks (Hogan, 2018). While user 

control over geodata, e.g., place or space-based posting locations or coordinate-

geotags embedded within the EXIF metadata of GPS-encoded photographic images, 

has been enabled or enhanced through these developments self-regulatory policies 

surrounding the use of geographical information are generally not so opaque. 

Geographical knowledge, and Location Based Services (LBS; Küpper, 2005), have 

done much to cement the utility of the World Wide Web. Knowing that a user is 

sitting in New York or London, e.g., enables Amazon to serve pages from country-

specific sites (priced in USD and GBP, respectively) or encourage its user to visit the 

appropriately localised site to make purchases. Early LBS systems, often based 

around the MaxMind (2012b) GeoIP database, were rudimentary and somewhat 

error-prone (Shavitt & Zilberman, 2010) but have, with time and new technology, 

improved significantly; most evidently in the mobile arena. It is now possible to 

locate users, or their devices, based upon satellite, cellular and even indoor 

positioning using GPS, cell mast or WiFi data (Küpper, 2005). The developers of 

most web sites and mobile applications do their utmost to know where users are 

situated. Using LBS positioning techniques or HTML5 Geolocation (World Wide Web 

Consortium, 2018) and Google's (2018c) Reverse Geocoding API it is now easy, in 

code, to move from Latitude and Longitude coordinate pairs to an address. Hence, 

systems from Facebook (e.g., Figure 1-1, p5), Google, Twitter and others almost 

always know – with increasing spatial granularity over time – where their users are 
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located. This knowledge, regrettably for geographers and others (e.g., electoral 

regulators) with an interest in these subjects, does not translate into the ready 

availability of locational information alongside digital traces of online activity; 

platform privacy policies generally restrict access to geodata unless users have 

explicitly ‘opted-in’ to geolocation sharing (e.g., Twitter, 2014) and corporations are 

unwilling to release any more information than they have to. 

Geolocation tracking by major Internet businesses does, however, now present a 

somewhat pernicious intrusion in daily life. The European Consumer Organisation 

(BEUC; Bureau Européen des Unions de Consommateurs in French) has recently 

filed seven complaints with national data protection authorities regarding Google’s 

location tracking, its director Monique Goyens reportedly stating (Keane, 2018) that 

‘Google's data hunger is notorious but the scale with which it deceives its users to 

track and monetise their every move is breathtaking.’ The BEUC report, titled EVERY 

STEP YOU TAKE: How deceptive design lets Google track users 24/7, notes that 

location tracking is pervasive, and cannot be switched off, on smartphones running 

the market-leading Android mobile device operating system developed by Google 

(Forbrukerrådet, 2018). Similar accusations have been levelled against Facebook 

whose various APIs, lobby group Privacy International have detected, when used on 

partner sites including Skyscanner and Duolingo, ‘[track] Android users even if they 

don’t have a Facebook account’ (Cuthbertson, 2018). 

Geographical and locational knowledge are of great value to Internet businesses 

but are also of great value to society, government, regulators and researchers. It 

seems increasingly likely that moves to stem the worst excesses of the ‘Wild West’ 

identified in OSN advertising and data (mis)use, highlighted by the Facebook and 

Cambridge Analytica scandal, will be forthcoming (Charter, 2018). Facebook, as a 

result of its lax attitudes to data protection, has already received a £500,000 fine 

from the Information Commissioner's Office in the UK (BBC News, 2018d) with a 

much larger, £8.9m fine, levied by Italian data protection authorities (Embury-
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Dennis, 2018). Law makers in the UK, US and EU are reportedly working up 

legislative responses to Web and social media misuses just as others, e.g., Reich 

(2018) have suggested that Facebook, Google, Apple and Amazon should be 

‘broken up’ in anti-trust actions, as the original corporate ‘robber barons [of the 

first] Gilded Age’ in America were; a suggestion returned to in Section 7.7 (p310). 

Geographical data collected and used, but not shared, by the Internet giants in 

support or pursuit of their operational and ‘advertising monetisation’ strategies (N. 

Newman et al., 2016) is itself of immense value in tracing how content is consumed 

and disseminated online. Legislators and regulators, in addition to their existing 

responses, should also consider how access to geographical data might be 

improved, even if they were anonymised, aggregated or degraded. The following 

section offers suggestions in this area which might better enable the geographical 

tracking of political campaign material disseminated over the Internet. 

6.3.3 Technical responses 

Opinion, information and misinformation travel through ‘cyberspace’ via multiple 

channels. Very few of these can be tracked geographically, particularly shared 

communications made on social media networks. IP addresses, which are available 

to platform operators but redacted from publicly-accessible OSN data to protect 

user privacy, allow reasonably accurate locational estimations to be built from 

GeoIP databases (MaxMind, 2012b, 2012a). Many larger websites or applications 

also collect GPS-coordinates, or spatially-referenceable WiFi or cellular telephony 

mast information (Stackexchange, 2016), from smartphone-based users as they 

interact online. 

The solution proposed here would: 

• Store, alongside each message in all OSN interaction metadata for all users, 

a low resolution Latitude and Longitude coordinate pair or, alternatively, a 

lookup to, e.g., a 1x1km grid square. This would enable low-resolution 
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geographical tracking of all OSN content consumed or shared online and has 

several other advantages: 

o Platform operators will already know the geolocation of most 

pageviews using server-side GeoIP lookups or client-side GPS or 

WiFi/cell mast data, and could degrade known coordinates to a 

lower resolution or allocate coordinates to a grid square identifier or 

the top/left coordinate of a bounding box etc. 

o Personal locational privacy would not be affected as high-resolution 

coordinates would not be saved or imparted unless users, as now, 

opted-in to full coordinate-geotagging. 

o Access to this low-resolution information, the degraded Latitude and 

Longitude coordinates or grid square lookup, could be restricted to 

accredited researchers or government agencies as, or if, applicable. 

o Even if content originators ‘cloaked’ their whereabouts by using 

Virtual Private Networks (VPNs) or The Onion Ring (TOR) enabled 

anonymous routing and Web browsers, geographical patterns of 

consumption and sharing of this content by the vast majority of OSN 

users would reveal whether the content was intentionally geo-

targeted, prompting additional and more detailed investigations into 

sources of origination as required. 

Internet Protocol, version 6 (IPv6) provides increased capabilities for ‘including 

geolocation information in the headers of IPv6 packets (IPv6 GEO)’, the standard 

proposes optional storage of Latitude and Longitude pairs as both 16-bit integer 

and 32-bit fractions together with the storage of altitude (Skeen, 2017). Increased 

usage of this TCP/IP transmission protocol as IPv4 runs out of namespace – and/or 

World Wide Web Consortium (W3C) standards-based mechanisms to provide 

lookups to degraded coordinates or anonymised geographical areas or grid squares 

in IPv4 or IPv6 packets, rather than to full-resolution Latitude and Longitude 

coordinate pairs – would enable rudimentary geographical tracking of all Web or 
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OSN-based content consumption. This idea might raise privacy concerns (Groat, 

Dunlop, Marchanyy, & Tront, 2011) but, if the data were sufficiently anonymised 

and geographically sufficiently degraded, the benefits to democracy could be 

considerable. 

As Section 6.2 (p229) has shown, during electoral campaigns potentially nefarious 

or inflammatory content is targeted not just at individuals but at areas; key ‘swing’ 

States or constituencies (Figure 1-6, p32; Figure 1-7, p33) whose results often 

dictate wider democratic outcomes. In many ways this targeting highlights the 

vulnerability of the democratic, and particularly ‘first-past-the-post’, voting systems 

used in the UK and several other countries historically influenced by Great Britain,  

including Canada, India, New Zealand and the United States of America. Diamond & 

Morlino (2004) have stated that ‘At a minimum, democracy requires: 1) universal, 

adult suffrage; 2) recurring, free, competitive, and fair elections; 3) more than one 

serious political party; and 4) alternative sources of information.’ While politicians 

have sought the popular vote ever since representative democracies were 

established, and changing media environments (e.g., television in the 1950s) have 

provided sometimes contentious platforms for doing so (Calhoun, 1992), new-

found possibilities to more subtly manipulate electorates through social media 

advertising provide a particularly concerning development. As the Cambridge 

Analytica revelations have revealed, the material may be so well micro-targeted – 

on interests, behaviours and geography – that its existence may be extremely 

difficult to trace. 

Knowing what has been seen, roughly where, would significantly improve campaign 

oversight. It might even enable platform operators, citizens, researchers or 

authorities to arrest social-media promulgated hate crime which, worryingly, 

appears to be the next stage in ‘advanced’ geo-behavioural targeting (Müller & 

Schwarz, 2017). 
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6.4 Additional findings 

Pavalanathan & Eisenstein (2015, p2146) have noted that coordinate-geotagged 

‘Twitter data offers an invaluable resource for studying the interaction of language 

and geography, and is helping to usher in a new generation of location-aware 

language technology. This makes critical investigation of the nature of this data 

source particularly important.’ The authors acknowledge (p2145) that ‘[several] 

papers draw similar conclusions, showing that the the distribution of geotagged 

tweets over the US population is not random, and that higher usage is correlated 

with urban areas, high income, more ethnic minorities, and more young people.’ 

They also suggest that these results may have arisen from demographic and 

linguistic ‘confounds and consequences’ in coordinate-geotagged Twitter tweets 

and, by extension, other geotagged OSN data, which are biased towards these age 

groups and geographies. 

This section presents the results of several additional investigations conducted to 

identify these effects in US2012 and SCOT2014 case study data including 

spatiotemporality, geo-retweeting, data sparsity, OSN-Census data fusion, graph 

analysis and data skewness. As in the US, coordinate-geotagged OSN messages 

found within the boundaries of the UK exhibit several similar probable age and 

urban biases which suggests, as the results in Chapter 5 (p186) have already 

confirmed, that the representativeness of geotagged OSN data is limited and that 

this limitation (Section 6.2, p229) must be considered in future research. 

6.4.1 Spatiotemporality 

Coordinate-geotagged records may be mapped by day and visualised as an 

animation, using Tableau or other GIS software (Section 4.5.2, p161). 

Spatiotemporal visualisations of this type work well on-screen (An et al., 2015) but 

are notoriously difficult to reproduce on paper; except, perhaps, as a ‘flip book’ or 

‘flick animation’, as used in Scotese's (2004) ‘cut-out-and-keep’ paper-based 



Geotagging matters? 

247 

 

animation of Continental Drift. Figure 6-3 presents coordinate-geotagged OSN 

interactions from the US2012 data set in this way. Cross-referencing the graph of 

mentions of Presidential Candidate’s surnames recorded by day (Figure 1-3, p25) 

with the map sequence shown in Figure 6-3 (below) it is clear that impacts from 

real-world events, such as the televised Presidential (or Vice Presidential) Candidate 

Debates of 3, (11), 16 and 22 October 2012 appear distinctly, both as peaks in the 

timeline and geographically on the map. 

  
01-10-2012 02-10-2012 

  
03-10-2012 (Pres. Debate) 04-10-2012 (Aftermath) 

  
05-10-2012 06-10-2012 
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07-10-2012 08-10-2012 

  
09-10-2012 10-10-2012 

  
11-10-2012 (Vice Pres. Debate) 12-10-2012 (Aftermath) 

  
13-10-2012 14-10-2012 

  
15-10-2012 16-10-2012 (Pres. Debate) 
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17-10-2012 (Aftermath) 18-10-2012 

  
19-10-2012 20-10-2012 

  
21-10-2012 22-10-2012 (Pres. Debate) 

  
23-10-2012 (Aftermath) 24-10-2012 

  
25-10-2012 26-10-2012 
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27-10-2012 28-10-2012 

  
29-10-2012 30-10-2012 

  
31-10-2012 01-11-2012 

  
02-11-2012 03-11-2012 

  
04-11-2012 05-11-2012 
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06-11-2012 (Election Day) 07-11-2012 (Aftermath) 

Figure 6-3 – US2012: Spatiotemporal patterns of activity in 160,934 coordinate-geotagged 
interactions by day through to election night 

While the aftermath of each of the televised debates and the larger peak on and 

around election day are visible geographically as a ‘lighting up’ of the Eastern 

Seaboard of the United States, there are also many localised subtleties within the 

observed spatiotemporal record. Throughout the 2012 US Presidential Election 

campaign, and during the 2014 Scottish Independence Referendum, clusters of 

coordinate-geotagged OSN interactions sporadically appear, disappear or remain 

reasonably consistently in place; reflecting the observed spatiotemporal spread of 

coordinate-geotagging activity on OSNs in response to events such as political 

meetings or breaking local news stories occurring in given towns, cities or regions. 

If all OSN interactions were coordinate-geotagged, or IP addresses or lower-

resolution Latitude and Longitude coordinate pairs were made available alongside 

message text in OSN metadata (Section 6.3, p238), this type of data would provide 

a remarkable and comprehensive spatiotemporal resource. Unfortunately, as this 

thesis has demonstrated, only a small percentage of OSN interactions are 

coordinate-geotagged, and geotagging users are not representative of all users on 

either of the Twitter or Facebook social media platforms examined in this research. 

6.4.2 Geo-retweeting 

While the overall percentage of coordinate-geotagged Twitter retweets (at 1.25%, 

Table 4-8, p170) is in line with the low rates found in those OSN Streams sampled 

without the explicit need for geography (0.88%-1.45%, Table 4-1, p128 and Table 
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4-2, p132) many coordinate-geotagged retweets (n=102,343) reference, with 

different coordinates, Twitter tweets which were themselves originally coordinate-

geotagged. These coordinate-geotagged retweets could only have been made by 

users ‘copying and pasting’ the body of the original Twitter interaction into a new 

tweet composition box before retweeting it with their own coordinates (Sloan & 

Morgan, 2015). Analysis of coordinate-geotagged retweets therefore provides an 

important strand of investigation, providing information about geographical 

dispersion of opinion, even if for only a small proportion of all retweeted 

interactions. There are 3,641,030 Twitter retweets (Table 4-6, p165) in the research 

data corpus. Of these, 466,043 (12.80%) can be ascribed to the originating tweet by 

linking Twitter ID columns using SQL (Appendix 11 listing 39, p491). Data-mining 

shows that 102,343 retweets have been coordinate-geotagged (Appendix 11 listing 

40, p491) and 94,474 of these interactions can be linked back to the originating 

Twitter tweet (Appendix 11 listing 41, p491). Further SQL queries, designed to 

determine whether original and retweeted coordinate pairs differ (Appendix 11 

listing 42, p491), detect 73,400 retweets of this type, originating from 14,546 

distinct Twitter tweets (Appendix 11 listing 43, p492). The two sets of coordinates 

have been used to map dispersal effects, as shown in Figure 6-4 (p253). The 

median, average and maximum straight-line retweet distances across both events 

are, respectively, 2.72km, 17.22km and 2,223.26km. While the longer lines shown 

in Figure 6-4 emphasise long distance retweeting, the average retweet distance 

across the political two events is <18km and the median <4km. There are, however, 

some differences in these geographical straight-line measurements between the 

two events, as shown in Table 6-1. 

Table 6-1 – US2012/SCOT2014: Number of geo-retweet coordinate pairs, median, average 
and maximum straight-line geo-retweet distances 

Event N pairs Median Average Maximum 
US2012 1,029 3.63km 26.30km 519.92km 
SCOT2014 72,371 2.71km 17.10km 2,223.26km 
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Figure 6-4 – US2012/SCOT2014: Geographical dispersal of Twitter retweets in the UK and 
Ireland (both electoral events) 

These findings are at odds with the higher dispersion distances (1,698km median, 

955km average) reported by van Liere (2010) using a much smaller sample of 

Twitter data (n=13,399 retweets) and the ‘749 statute miles’ reported by Leetaru et 
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al. (2013) analysing a much larger 10% sample of all Twitter tweets and retweets 

(n=1,535,929,521) made between 23 October and 30 November 2012, a time 

period which overlapped with US2012 data acquisition (Section 4.2.4.1, p126).  

Many more dyads of original tweet and retweeted coordinates are observed in the 

SCOT2014 data set, which was captured using one continuous 1:1 sample 

(Appendix A7.3, p435) over a much longer interval than that used during the 

US2012 event, most of which were sampled in a 1:50 ratio leading to ‘misses’ 

between tweet origination and subsequent retweet. As well as demonstrating 

lower median and average straight-line geo-retweet distances, in line with 

Scotland’s smaller geographical extent (Table 6-1, p252), these results suggest that 

electoral events may foster a more ‘local’ pattern of communication in social 

media. When reviewing his findings, based on the 12-hour collection of all Twitter 

message text containing the ‘RT’ retweet identifier, van Liere (2010, p3) argues that 

‘the [955km] average and [1,698km] median distance are too large to speak of local 

communication which suggest that the information broker pattern is the most 

appropriate pattern for this sample.’ This information sharing pattern, van Liere 

continues, ‘is based on following people with shared interests and not necessarily 

following friends.‘ Results from the current research, analysing politically discursive 

material, suggests that the alternative ‘local communication’ pattern, which van 

Liere defines as ‘conversations […] mainly between people who are friends in the 

off-line world’, is more prevalent during the two case study electoral campaigns. 

The large number of tweets originating North of Invergordon in Highland Scotland, 

and coordinate-retweeted throughout Scotland, stem from one particularly prolific 

coordinate-geotagging social media user during the 2014 Scottish Independence 

Referendum, Mulder1981. This Twitter user, a Scottish Tory Councillor and 

‘influential BritNat Twitter troll’ (The Herald, 2017), posted from 2,503 locations; 

largely in Scotland but from as far afield as Turkey and the West Coast of America. 

Coordinate-geotagged retweets are considered extremely valuable in analysing 
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geographical dispersal of content and have been coded with a ‘High’ score (200) 

when categorising PGI metadata fields (Table 4-10, p174). 

6.4.3 Data sparsity 

Data held in tabular rows and columns (or ‘fields’) in an RDBMS, such as Oracle 12c 

used here (Section 4.3.1.3, p145), must store empty cells, cells containing no data, 

as NULL values. In this respect, tabular data storage is less efficient than JSON-

based data storage, in which only the values of non-null fields (or JSON ‘keys’) are 

recorded (ECMA International, 2013, 2017). While less efficient, the storage of 

NULLs in RDBMSs enables straightforward computation of row-level sparsity 

statistics across tables. The following charts (Figure 6-5, Figure 6-6 and Figure 6-7 

starting on p257) show row level sparsity by field, or column name, across the 

research data corpus stored in the main INTERACTIONS table, further broken 

down by Stream (Appendix 7, p432). The charts are ordered by descending sparsity 

level (% null records), then by column name. Column names appearing at the top of 

Figure 6-5 are fully or well-populated with values in all rows, and become 

progressively more highly-populated by nulls in ensuing charts. 

In order to fit within the 30-character limit for American National Standards 

Institute (ANSI) SQL column names, which Oracle (2018a) adheres to, long JSON key 

names or CSV header names have been shortened and consistently formatted. The 

abbreviations shown in Table 6-2 have been used. In the INTERACTIONS table, 

the dot notation of the original lower-case JSON key name 

twitter.in.reply.to.screen.name (also used in the header row of the 

DataSift CSV files) becomes TW_IN_RE_TO_SCREEN_NAME after dots are 

replaced with underscores and the abbreviations above are applied. Sparsity counts 

have been calculated using a PL/SQL programme detailed in Appendix 9 (p443). This 

program loops over 149 columns in the INTERACTIONS table for each of the 4 

Streams recorded. Counts of NULL or zero length values are made using SQL 

queries and results stored, before these are transposed (Appendix A9.4, p449) and 
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used in Tableau (Section 4.5.2, p161) to create the graphical output shown in the 

three figures below. 

Table 6-2 – Abbreviations used in Column Names of the INTERACTIONS table 

Abbreviation Meaning 
ATT Attributes 
FB Facebook 
RE Reply 
RT Retweet 
RTED Retweeted 
ST Street 
TW Twitter 

 

Only 10 of the 146 fields, or column names, present in the INTERACTIONS table 

(6.85% of all fields) are fully populated, with no NULL values in any rows. The 

distribution of highly populated fields in each Stream varies. Some fields, e.g., 

INTERACTION_GEO_LATITUDE and INTERACTION_GEO_LONGITUDE in the 

US2012_GEO Stream (Figure 6-7, p259) are highly populated as a result of sample 

design; this Stream was designed to record only coordinate-geotagged interactions 

(Appendix A7.2.1, p433). Elsewhere there is general uniformity in sparsity, except 

where some fields (e.g., INTERACTION_TAGS, DEMOGRAPHIC_GENDER) 

appear highly populated in the three US2012 Streams but are not well-populated 

in the SCOT2014 Stream. There is no obvious explanation for these discrepancies, 

although they probably arise from changes in the operation of the DataSift platform 

or its access to underlying social media feeds during the two-year interim between 

recordings. 

The US2012_GEO Stream, filtered on the presence of geographic coordinates 

(Appendix A7.2.1, p433), exhibits clear differences to the other Streams. The 

columns FB_AUTHOR_AVATAR and FB_AUTHOR_ID, present in 10.28% of 

records overall, are wholly absent and no OSN interactions from Facebook have 

been sampled.  
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Figure 6-5 – Row-level sparsity (% non-null) by field/column names; overall and by Stream 
(first 50 columns) 
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Figure 6-6 – Row-level sparsity (% non-null) by field/column names; overall and by Stream 
(next 50 columns) 
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Figure 6-7 – Row-level sparsity (% non-null) by field/column names; overall and by Stream 
(last 49 columns) 

Differences in the field sparsity of the US2012_GEO Stream are an unintended 

consequence of the restrictive CSDL condition interaction.geo exists 

used to record these interactions. No coordinate-geotagged Facebook posts were 

sampled during the US2012 event. Later, 1,231 coordinate-geotagged Facebook 

posts were sampled (Table 4-8, p170) by the SCOT2014 Stream without this 
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condition, suggesting that DataSift’s access to Facebook data may have changed in 

the interim. 

Table 6-3 – Top 10 fully populated fields/column names, commentary and utility 

Column Name Utility 
INTERACTION_AUTHOR_AVATAR Low 
URL to an image used as the author’s avatar. Low utility as the image may not 
be a true likeness of the user, or even the same sex/ethnicity. 
INTERACTION_AUTHOR_ID Low 
DataSift’s unique identifier for the author. Low utility except when counting or 
grouping messages by author. 
INTERACTION_AUTHOR_LINK Medium  
URL to the author’s Twitter/Facebook home page. Medium utility in this study, 
potentially higher utility if the link is followed and social graphs are mined. 
INTERACTION_CONTENT High 
Text content of the Twitter Tweet or Facebook Post recorded. High utility 
variable length message text, ranging from 3 to 82,478 characters; median 
length 127. 
INTERACTION_CREATED_AT High 
UTC date/time stamp of interaction creation. High utility date/time stamp 
allowing temporal (and/or spatiotemporal) analysis of message flow. 
INTERACTION_ID Low 
DataSift’s unique identifier for the interaction. Low utility as the identifier is 
unique to the message, which should itself be unique. 
INTERACTION_SOURCE Medium  
Source of the interaction. Medium utility as the top 20 sources account for 
85.19% of all messages, and 65.66% of these are made using mobile phone 
applications. 
INTERACTION_TYPE Low 
Type of interaction, either Twitter (7,353,878 interactions, 89.72% Overall) or 
Facebook (842,502 interactions, 10.28% Overall). Low utility. 
INTERACTION_SCHEMA_VERSION Low 
DataSift’s schema version identifier. Low utility as all interactions bar 10 (which 
are null) have Schema Version = 3. 
INTERACTION_AUTHOR_NAME Low 
Author’s name (may be real, no way of knowing) as opposed to their username 
(@POTUS etc.). Low utility, usage identifies users, raising ethical issues. 

 

The ten fields, or column names, fully-populated across all Streams are shown in 

Table 6-3, together with a commentary on field content and an assessment of 

analytical utility. Examination of the data shows that many of these fields have little 

practical analytical utility, with six of the top ten fully-populated fields containing 
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low utility data. Two of the fully-populated fields are of medium, and two of high, 

utility. A guide of this type has not been found elsewhere in the academic literature 

and should prove useful to subsequent researchers. 

A further seven fields are generally well populated both overall (86.9 – 99.3% non-

null) and across the four Streams. These fields, or column names, are shown in 

Table 6-4, again with commentary and an assessment of analytical utility.  

Table 6-4 – Next 7 highly populated fields/column names, commentary and utility 

Column Name Utility 
INTERACTION_LINK Low 
URL to the interaction recorded. Low utility as all the data on the page is 
already recorded alongside the interaction in the database. 
LANGUAGE_CONFIDENCE Low 
DataSift’s 0-100 confidence score for language detection. Low utility in this 
study, where the English language is used in 95.44% of messages. 
LANGUAGE_TAG Low 
DataSift’s language tag (EN=English; ES=Spanish etc.). Low utility as only 3.12% 
of interactions are not in English. Spanish and Portuguese are 2nd and 3rd most 
used. 
SALIENCE_CONTENT_SENTIMENT Medium 
DataSift’s sentiment score, ranging -38 to +45, median value 3 for non-zero 
records. Medium utility for sentiment analysis (using a ‘black box’ approach). 
INTERACTION_AUTHOR_USERNAME Low 
Author’s username (Twitter or Facebook username, e.g., @POTUS). Low utility, 
usage identifies users, raising ethical issues. 
TW_ID Low 
Twitter’s unique identifier for an interaction. Low utility as other columns 
provide links back to the same information. Can be shared with others to rebuild 
corpus. 
KLOUT_SCORE High 
Index of Social Media Impact, ranging in this data set 10 through 99, median 41. 
High utility in ranking users’ impact. Media firms have the highest Klout scores. 

 

The tail-off in row-level completeness (Figure 6-5, p257) amongst the remaining 

136 fields stored across the Streams in the database is particularly noticeable. After 

the heavily populated fields described in Table 6-3 (top 10) and Table 6-4 (next 7), 

row-level sparsity increases markedly as the percentage of NULL values present in 

rows within each field increases. Values for some fields, such as the potentially 
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useful indicator DEMOGRAPHIC_GENDER, are present in 52.11% of records 

overall, most from the SCOT2014 Stream with much lower percentages in each of 

the three US2012 Streams. The least populated field, TW_PLACE_ATT_REGION, 

stores values in only 6 of 8,196,380 rows and therefore has next to no practical 

utility. The data are ‘Big’, but far from complete. This characteristic separates social 

media data from other types of population or administrative data often used in 

social science research and is not always explicitly stated in the literature. Fusion of 

coordinate-geotagged social media data to these more richly-populated data sets, 

to produce population profiles from 2010 US and 2011 UK Census data, in line with 

recommendations from Crampton et al. (2013) and Fuchs (2017a), has been 

conducted to partially redress this data sparsity problem and is reported upon 

below.  

6.4.4 Data fusion 

The previous section described the large, if sparse, nature of the OSN data sets 

examined in this research. There are no age or sex data for any users, although a 

DataSift-derived and text-content-inferred gender flag of questionable quality is 

present featuring the same ‘male’, ‘female’, ‘mostly male’, ‘mostly female’, ‘unisex’ 

etc. categories found in the 2012 French Presidential Election technical proof of 

concept exercise (Figure A6-3, p429). Ethnicity, marital status, educational 

attainment level and other demographic data commonly used as controls in social 

science research are wholly absent, prompting Mislove et al. (2011, p554) to 

observe that ‘despite the enormous potential presented by this remarkable data 

source, we still do not have an understanding of the Twitter population itself.’ 

Mellon & Prosser (2017) have highlighted similar problems in data publicly-available 

from Facebook, the other major OSN data source used in this research. 

Following one of Crampton et al.'s (2013) recommendations to move ‘beyond the 

geotag’, by fusing OSN data to public (e.g., census) data sets, a suggestion also 

echoed by Fuchs (2017a), this section details the work undertaken to produce 
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population profiles of coordinate-geotagging OSN users’ likely areas of origin. The 

analyses are a best estimate, dependent upon the assumption that all geotagged 

coordinates represent home locations, which I. L. Johnson et al. (2016) and this 

research partially discount, but does nevertheless provide some demographic 

information about the areas, both in the US and the UK, from which coordinate-

geotagging OSN users may well have created their social media messages. Several 

of the results reported here also usefully corroborate findings from other studies 

examining social media demographics in these two countries (Blank & Lutz, 2017; 

Longley & Adnan, 2016; Longley, Adnan, & Lansley, 2015; Sloan et al., 2015). In the 

US, Mislove et al. (2011, p555) have reported that ‘Twitter users significantly 

overrepresent the densely [populated] regions of the U.S., are predominantly male, 

and represent a highly non-random sample of the overall race/ethnicity 

distribution.’ In the UK, Mellon & Prosser (2017, p1) have found that ‘On average 

social media users are [found to be] younger and better educated than non-users, 

and they are more liberal and pay more attention to politics’, mainly as a result of 

their demographic composition. Social media users in the UK also appear to share 

similar age and education characteristics with their US counterparts, Mellon & 

Prosser (2017, p1) citing several surveys which show that US ‘Facebook and Twitter 

users tend to be younger and more educated than the general population, with 

Twitter having a more skewed distribution.’ 

Geodemographic techniques have been widely-used, particularly in marketing and 

market analysis, to segment customer groups (Voas & Williamson, 2001) ever since 

Richard Webber’s work led to the creation of ACORN (A Classification of Residential 

Neighbourhoods) in the 1970s (McElhatton, 2004). Leventhal (2016), citing Sleight 

(2004), defines geodemographics ‘as the analysis of people by where they live’ 

proceeding to identify the two principles that underpin the methodology, ‘1) [that] 

two people living in the same neighbourhood are more likely to have similar 

characteristics than two people chosen at random’ and ‘2) [that] neighbourhoods 

can be categorized according to the characteristics of their residents; two 
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neighbourhoods belonging to the same category are likely to contain similar types 

of people, even though they may be geographically far apart.’ ACORN, and later 

geodemographic classifications such as MOSAIC (Experian, 2018; Webber, 2004), 

categorise small areas (US Census Blocks, UK Census Output Areas or sets of zip 

codes or postcodes) into typologies (e.g., MOSAIC’s ‘A01 World-Class Wealth’ and 

‘B08 Bank of Mum and Dad’ types) based upon public Census counts (e.g., age 

composition, number of cars in households) and private data sources, including 

electoral roll, credit checking and/or consumer spending data which together are 

often used as proxies for wealth. These geodemographic typologies, or 

‘discriminators’, are commercial products and are not generally available to 

academic researchers. Typically, they also rely upon zip or postcode-level matching 

to ‘fuse’ records to classification types. Neither US zip codes nor UK postcodes are 

present in the Facebook and Twitter interactions which comprise the research data 

corpus. A GIScience-based approach provides the solution to this problem, using 

GIS software (MapInfo Professional 8.0) to allocate (‘point-in-polygon’) coordinate-

geotagged OSN interactions to publicly-available 2010 US Census Tract and UK 2011 

Census Output Area boundaries. Lerman et al (2017, p210) have used an identical 

approach and report that their findings ‘highlight the role of […] demographic 

factors in online interactions and demonstrate the value of traditional social science 

sources, like US Census data, within social media studies.’ 

Barr (1996) has stated that ‘The US and UK censuses have many similarities’ as well 

as some ‘instructive’ differences, mainly based upon their ’constitutional basis [and] 

the way [in which] they are administered.’ The US Census, for example, ‘is taken, 

and used, for electoral re-districting to a greater extent than [is the case in] the UK’ 

and has historically been freely accessible from government whereas the UK Census 

has not. Since the 2011 Census, however, the UK government has opened access to 

counts and accompanying digital mapping files so that US and UK data availability 

are now comparable, even if differences in age breaks etc. used in data collection or 

reporting remain. Results from the fusion exercise, linking US2012 and SCOT2014 
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coordinate-geotagged interactions to 2010 US Census and 2011 UK Census data, 

are presented below. 

6.4.4.1 US Census / US2012 data fusion 

In 2010, the US Census Bureau (2012a) defined 74,002 Census Tracts with an 

average population of 4,222 persons per Tract (ranging 1-37,452, median 3,993) 

built upon 11,155,486 much smaller Census Blocks. US Census Tracts are larger in 

terms of population and, in many cases, areal extent than the Output Areas (OAs) 

used to build the UK Census (Section 6.4.4.2, p272). US Census Tract boundaries 

were chosen over Census Blocks for point-in-polygon intersection as these are 

available nationally with ‘Selected Demographic and Economic Data’ (US Census 

Bureau, 2012b) whereas the Block-level data set is not, and is only available for 

download State by State, requiring significant post-processing. Of 168,873 non-0/0 

Latitude/Longitude coordinate-geotagged interactions (n Facebook posts=0, n 

Twitter tweets= 160,837, n Twitter retweets= 8,036) in the US2012 data set (Table 

4-8, p170) 151,567 records (89.75%) could be allocated to 38,645 distinct, or 

52.22% of all, US Census Tracts. The remaining 17,306 coordinate-geotagged 

records fell outside US boundaries. 

In pseudo-code the GIScience steps involve: 

• Intersecting each of the OSN points with Census Tract polygons; 

• Attaching Census counts for the underlying polygon to each point, and; 

• Saving and exporting the result for further summation. 

As each interaction picks up the underlying counts from US Census Tracts, the 

counts for ‘OSN Tracts’ containing n interactions appear n times in the 151,567 

record output, i.e., a Tract containing 4 geocoded interactions will have its Census 

counts repeated 4 times. While the totals for OSN Tracts (Figure 6-10, p268 

onwards) are therefore higher in total than totals for the US population the 

calculation of percentages for each Census count against this weighted figure allows 
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comparison with percentages also calculated for each count against the US overall. 

The ‘% OSN Tracts’ figure in each chart shown in Figure 6-10 (p268) to Figure 6-14 

(p271) is compared to the percentage for each count (e.g., Males or Females aged 

20-24 years old) for the US as a whole (‘% United States’) and indexed against the 

latter to show under/over representation. 

Using individuals’ locations to create summary areal reports in this way does raise 

some dangers of stumbling into the ‘ecological fallacy’ identified many years ago by 

W. S. Robinson (1950) and Selvin (1958). W. S. Robinson (1950, p357) warned that 

‘ecological correlations [cannot] validly be used as substitutes for individual 

correlations’ even when re-weighting takes place. However, in the absence of any 

demographic data from Facebook and Twitter the method used here enables 

comparison of areas containing coordinate-geotagging OSN users against national 

percentage bases. These profiles should not be used to suggest that all coordinate-

geotagging OSN users in areas share a common demographic profile, or that 

coordinate-geotagging OSN users in any given area are generally representative of 

the population of that area. The analysis is only possible for those users recording 

Latitude and Longitude coordinates alongside their OSN interactions, and this 

percentage is a) a small one, and; b) is somewhat unrepresentative of OSN users 

overall, as this thesis has demonstrated (Chapter 5, p186). However, over one half 

of all US Census Tracts contain coordinate-geotagged interactions and, as Figure 6-8 

(p267) and Figure 6-9 (p267) show, there is a significant overlap between areas of 

high population density and high OSN posting density, a result that has also been 

reported elsewhere (Mislove et al., 2011). 

The maps in Figure 6-8 (p267) and Figure 6-9 (p267), produced using QGIS (2018), 

show a clear relationship between US population density and coordinate-geotagged 

OSN interaction locations. Most explicitly geotagged Twitter tweets or retweets, 

and the few geotagged Facebook posts in the research data corpus, are made in the 

most densely populated parts of the United States.  
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Figure 6-8 – 2010 Contiguous US population density at Census Tract level (light=low; 
dark=high)  

 

Figure 6-9 – 2010 Contiguous US population density at Census Tract level and US2012 
coordinate-geotagged OSN interactions 
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Similar relationships between population density and OSN coordinate-geotagged 

locations have been reported in Germany (Hahmann, Purves, & Burghardt, 2014), 

the UK (Steiger, Westerholt, Resch, & Zipf, 2015), and several cities worldwide, 

leading Jiang, Ma, Yin, & Sandberg (2016, p349) to ‘conjecture that the spatial 

distributions of tweets […] quite accurately reflect those of urban populations.’ As 

Y. Liu et al. (2015, p517) have suggested, these geographical distributions suggest 

that in ‘urban fringe areas or rural areas’ communities appear under-represented 

on social media platforms. 

When comparing ‘% OSN Tracts’ with ‘% United States’ (Figure 6-10), populations in 

younger age groups (20-24 years old) are quite significantly (index=137, i.e. 37%) 

over-represented. Other age groups, such as those ‘Under 5 years’ old will, of 

course, hopefully not be posting online at all using either Twitter or Facebook, 

whatever the profile suggests about the areal demographic composition of Census 

Tracts containing OSN users’ coordinate-geotagged interactions. 

 

Figure 6-10 – US2012: Total population by age (OSN Tracts Indexed against US) 

Breaking down the geodemographic analysis further, by gender, OSN Tracts are 

somewhat over-represented by younger, male age groups when compared to the 

US base, again in the age range 20-24 (index=136, Figure 6-11, p269). 
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Figure 6-11 – US2012: Male population by age (OSN Tracts indexed against US) 

Likewise, OSN Tracts are also somewhat over-represented by younger, female age 

groups when compared to the US base, again particularly in the age range 20-24 

(index=138, Figure 6-12). 

 

Figure 6-12 – US2012: Female population by age (OSN Tracts Indexed against US) 

OSN Tracts are also over-represented by ethnically diverse non-White groups when 

compared to the US base (Figure 6-13, p270).  



Geotagging matters? 

270 

 

 

Figure 6-13 – US2012: Population by race (OSN Tracts indexed against US) 

The profile shown in Figure 6-13 suggests that OSN Tracts are slightly below US 

norms for White population and above US norms, particularly for ‘Black or African 

American’, ‘Asian Indian’, and ‘Korean’ ethnic groups. While the latter two ethnic 

groups comprise only a very small percentage of total US population, the ‘Black or 

African American’ ethnic group comprises a larger proportion (12.61%) of US 

population and formed a key target group in both of Barack Obama’s ‘online’ 2008 

(Kiyohara, 2009) and 2012 Presidential campaigns (Bimber, 2014). 

Finally, OSN Tracts are significantly over-represented (index=239) by population ‘In 

group quarters’ when compared to the US as a whole (Figure 6-14, p271), 

particularly in terms of the US Census Bureau’s ‘Noninstitutionalized population’ 

class (index=381) living in ‘group quarters’. The US Census Bureau (2010, p1) 

defines Group Quarters as ‘a place where people live or stay, in a group living 

arrangement, that is owned or managed by an entity or organization providing 

housing and/or services for the residents’. 
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Figure 6-14 – US2012: Population in households and group quarters (OSN Tracts indexed 
against US) 

Group Quarters ‘include such places as college residence halls, residential 

treatment centers, skilled nursing facilities, group homes, military barracks, 

correctional facilities, and workers’ dormitories’ (US Census Bureau, 2010). The 

non-institutionalised population is comprised of people who are 16 years or older 

and are not inmates of penal, mental or elder-care institutions and who are not 

serving in the armed forces. The high index values (381 overall, 365 male and 398 

female) of OSN Tracts in non-institutionalised population against the US base 

(Figure 6-14) are suggestive of a significant student population of coordinate-

geotagging social media users, i.e. ~3.8 times more in OSN Tracts than would be 

expected generally in the US. Using a GIS to map coordinate-geotagged interactions 

and college and university sites, extracted from OpenStreetMap (2018), against 

non-institutionalised population broadly confirms this conclusion, as many 

educational institutions are proximal to large numbers of coordinate-geotagged 

OSN interactions and in or near Tracts, many of which are in urban areas, with high 

percentages of non-institutionalised population. 
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6.4.4.2 UK Census / SCOT2014 data fusion 

At the 2011 Census 181,408 OAs in England and Wales contained, on average, a 

population of 309 (Office for National Statistics, 2012) while in Scotland the average 

for 46,351 OAs was 110 (National Records of Scotland, 2013). Using the same 

methods detailed above, running a point-in-polygon intersection of coordinate-

geotagged OSN interactions (n Facebook posts= 1,227, n Twitter tweets= 92,311, 

Twitter retweets= 94,307) against UK Output Area boundaries, several similarities in 

population profiles to the US results (Section 6.4.4.1, p265) were revealed, albeit 

with different Census counts.  

 

Figure 6-15 – SCOT2014: Population by age (OSN OAs indexed against UK) 

Altogether, 140,673 Latitude and Longitude coordinate pairs from 187,845 

coordinate-geotagged interactions (74.89%) could be allocated to 21,811 distinct 

2011 UK Output Areas, 9.58% of all OAs in the UK. The remaining 47,172 

coordinate-geotagged interactions in the SCOT2014 data set fell outside the 

territorial boundary of the UK. Of the 140,673 intersected coordinate-geotagged 

interactions, 67.10% fell to OAs within Scotland, 30.93% to OAs within England and 

1.96% in Wales (Figure 6-16, p273). These OAs (Figure 6-15, above), as per the 

Census Tracts containing coordinate-geotagged US2012 interactions (Figure 6-10, 

p268), also exhibit a bias towards younger age groups, particularly those aged 20-

24 (index=149). 
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Figure 6-16 – SCOT2014: UK Output Areas (England=green, Wales=red, Scotland=blue) 
intersecting coordinate-geotagged OSN interactions 

Looking at the composition of this population by gender and economic activity, OSN 

OAs (Figure 6-17, p274) have higher than normal proportions of ‘economically 
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active male full time students’ (index=172) and ‘economically inactive male 

students’ (index=129). 

 

Figure 6-17 – SCOT2014: Male population by economic activity (OSN OAs indexed against 
UK) 

The picture for economically active/inactive females (Figure 6-18) is similar, with 

above average numbers of female students in OSN OAs; economically active full 

time female students index at 143 and economically-inactive female students at 

139. 

 

Figure 6-18 – SCOT2014: Female population by economic activity (OSN OAs indexed against 
UK) 

Lastly, in case there were any doubt that the outcome of the 2014 Scottish 

Independence Referendum most affected and interested natives of Scotland, Figure 

6-19 (p275) shows the population profile of OSN OAs by country of birth. 
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Figure 6-19 – SCOT2014: Population by country of birth (OSN OAs indexed against UK) 

Output Areas with a high proportion of residents born in Scotland exhibit a high 

index value of 636, reflecting a great deal of Scottish interest in the Referendum. 

6.4.4.3 Data fusion summary 

The findings reported above, of a relatively youthful coordinate-geotagging user 

base, are broadly in line with several studies in the literature (Ajao et al., 2015; 

Arribas-Bel, 2014; Jiang et al., 2016; Longley et al., 2015; Murthy, Gross, & 

Pensavalle, 2016; Steiger, Westerholt, et al., 2015; Wachowicz & Liu, 2016), which 

use a variety of techniques to estimate age, sex, and the urban concentration of 

OSN users. The finding that US Census Tracts containing coordinate-geotagging OSN 

users have a much higher than expected percentage of non-institutionalised 

population against the US base has not been reported elsewhere. The picture is 

imperfect, with results dependent on geodemographic profiling of a small 

proportion of U2012 and SCOT2014 users whose geotagged coordinates are 

assumed to be home locations. However, in the total absence of any reliable 

demographic information from Facebook, Twitter or DataSift, data fusion provides 

an indication of the sorts of areas we might expect geotagging users to come from. 

If Jiang et al. (2016, p349) are correct in their assertion that ‘this one percent [of 

geotagging users] is already large enough’ to sustain these types of analyses, then 
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the US and UK Census-based profiling of 292,240 coordinate-geotagged OSN 

interactions provides another useful investigatory output from this research. 

6.4.5 Graph analysis 

Graph analysis, and a new range of emergent graph databases (I. Robinson et al., 

2015), are particularly well-suited to the visualisation, network mapping and 

examination of OSN data sets, which are themselves inherently graph-based. 

Inspired by Euler’s study of the Seven Bridges of Königsberg (Shields, 2012), graph 

theory focuses on connections formed between ‘nodes’ by ‘edges’. In Euler’s study, 

the nodes comprised four parts of the city of Königsberg (now Kaliningrad), which 

were linked by seven bridges crossing the River Pregel (Gribkovskaia et al., 2007). 

Challenged to determine, mathematically, whether it was possible to walk through 

each part of the city (Figure 6-20) crossing each bridge only once, Euler approached 

the problem topologically, laying down the foundations for graph theory. 

 

 

 

Figure 6-20 – Euler’s drawing of the bridges of Königsberg in 1736 and a graphical 
representation of the bridges of Königsberg in 1736 after Gribkovskaia et al. (2007, p200) 

Regardless of the geometrical layout of the city and its bridges, Euler determined 

that the solution rested on the ‘connectedness’ of the graph and the overall 

number of odd or even ‘degrees’ (or connections) at the nodes. A connected graph 

has a link between every pair of nodes. In Königsberg each of the four nodes (or 

parts of the city) had an odd number of degrees (the bridge connections for K=5, 

A=3, L=3, V=3 shown on Figure 6-20) and the city was served by an odd number of 
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bridges. As Euler proved (J. R. Newman, 1953, p70), ‘If there are more than two 

regions which are approached by an odd number of bridges, no route satisfying the 

required conditions can be found.’ Only a fully connected graph with zero or two 

nodes of odd degree would allow Euler’s Walk; in Königsberg all four nodes were 

odd. Similar principles of ‘connectedness’ have been used in modern graph 

database software and applied to social network analysis (Russell, 2011, p288). 

Social networks comprise actors (Section 4.1, p118) who interact in some way, 

perhaps liking each other’s Facebook posts, mentioning each other on Twitter, or 

retweeting a given message.  

 

Figure 6-21 – SCOT2014: Gephi visualisation of ‘Twitter mentions’ (397,083 Nodes; 908,054 
Edges) showing YouTube as the nexus between campaign-related interactions (in purple 
and green) and discussion of girl-band Fifth Harmony’s single ‘Better Together’ (in blue) 
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Social media actors may be considered nodes and the forms of interaction edges in 

this scenario (Figure 4-1, p120). Using Gephi (2018a) graph visualisation and 

analysis software, both on a Windows 10 laptop and on a Scientific Linux 6 HPC 

node of the SCIAMA supercomputer (Appendix 8, p436), several graphs have been 

computed using OSN data exported from Oracle 12c (Section 4.3.1.3, p145). Larger 

sets of OSN interaction relationships could be analysed on the more powerful 

SCIAMA supercomputer, including the ‘Twitter mentions’ graph from the 

SCOT2014 data set shown in Figure 6-21 (p277), consisting of 397,083 nodes and 

908,054 edges.  

 

Figure 6-22 – American girl-band Fifth Harmony’s album, featuring title track Better 
Together, also the campaign slogan of the Unionist ‘Vote No’ coalition, was released on 18 

October 2013 during data collection for the 2014 Scottish Independence Referendum 
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The spatialised graph visualisation shown in Figure 6-21 (p277), produced using the 

Force Atlas 2 algorithm (Jacomy et al., 2014) and colour-coded by modularity class 

(Blondel et al., 2008), shows YouTube as the nexus of interaction relationships 

linking political campaign groups and news organisations (to the right hand side) 

with American girl-band Fifth Harmony (2013), in the centre, whose album Better 

Together (Figure 6-22, p278) was released soon after OSN data collection 

commenced for the 2014 Scottish Independence Referendum. The album title, 

coincidentally, used the campaign slogan adopted by the Unionist ‘Vote No’ 

coalition in the referendum and was one of several filters used to sample OSN 

interactions at the time (Section 4.2.4.2, p129). 

Graph analysis has proven useful in identifying communities in OSN data that are 

much less apparent when ‘mining’ data using SQL. A combination of graph analysis 

techniques and other indicators, e.g., identifying users making large numbers of 

one-sided communications, may also prove especially useful when identifying 

robotic posting (Marechal, 2016; Vosoughi et al., 2018). Altogether 153,637 OSN 

interactions in the SCOT2014 data set (2.37% of the total) mentioned ‘Fifth 

Harmony’ in message text and 1,206 of these (0.78%) were coordinate-geotagged. 

This reconfirms, once again, the typically low ~1-2% coordinate-geotagging rates 

observed more widely in this study (Table 4-8, p170) and by others (e.g., Leetaru et 

al., 2013), regardless of the terms used to ‘select for inclusion’ when filtering and 

recording OSN interactions.  

6.4.6 Data skewness 

Drawing on graph theory, Stefanidis, Crooks, et al. (2013, p329) point out that social 

media networks, especially Twitter, are ‘highly skewed in the sense that the 

majority of nodes have a low degree of connectivity while there are a small number 

of nodes which have a high degree.’ The highly connected nodes ‘can be considered 

as hubs of information dispersal and to some extent key actors in the social media 

sphere.’ 
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As Table 6-5 shows, many of these ‘key actors’ really are actors, singers, sports-

stars or other modern-day media celebrities (TwitterCounter, 2017). Ranking the 

top 10 US2012 users posting on Twitter by ‘followers count’ (the number of others 

following the author), calculated using SQL (Appendix 11 listing 44, p492), reveals 

four celebrities in positions 1, 3, 9 and 10 with massive Twitter followings.  

Table 6-5 – US2012: Top 10 users posting on Twitter by number of followers 

Position Author Name Followers Count 
1 Perez Hilton 5,716,500 
2 OMG Facts 5,107,364 
3 Stephen Fry 4,954,594 
4 E! Online 4,899,137 
5 TIME.com 3,907,791 
6 CNN en Español 3,255,309 
7 The White House 3,153,754 
8 The New York Times 3,129,274 
9 Pete Cashmore 3,022,966 

10 MC HAMMER 2,885,523 
 

While some major news organisations – e.g., The New York Times newspaper and 

Time magazine – and ‘The White House’ also appear, the number of celebrities in 

the top 10, and their reach in terms of followers, is striking. The influence of 

celebrity figures in social media networks, as measured here by followers count on 

Twitter, is in line with findings from other academic studies into online social media 

‘opinion leaders’ (Karlsen, 2015). In a political context, Park, Lee, Ryu, & Hahn 

(2015, p246) have suggested that ‘the rise of networked media such as Twitter [has 

amplified] celebrities’ ability to speak on policy matters directly to the public’; a 

factor which may well have been influential in the election of ex-TV personality 

Donald Trump to the US Presidency in 2016.  

Altering and re-running the query with the addition of a constraint to check for the 

presence of geographical coordinates (Appendix 11 listing 45, p492), it is possible to 

determine the top 10 users who have coordinate-geotagged at least one of their 

Twitter tweets. Coordinate-geotagging hip-hop musician, MC Hammer (also in 
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Table 6-5, p280), appears first in this list (with 2,885,523 average followers), joined 

by fellow singer Lea Salonga in second (1,236,081) and Joe Trippi (an American 

Democrat campaign worker, on 1,017,789) in third.  

Table 6-6 – US2012: Top 10 users posting with coordinate-geotagged messages on Twitter 
by number of followers 

Position Author Name Followers Count 
1 MC HAMMER 2,885,523 
2 Lea Salonga 1,236,081 
3 Joe Trippi 1,017,789 
4 B.J. Mendelson 766,765 
5 Jason Squatriglia 384,269 
6 Javed Akhtar 351,286 
7 The Real Lil Dee 314,083 
8 natalie nunn   305,429 
9 WW2 Tweets from 1940 260,635 

10 Kevin Nash 255,709 
 

Only three coordinate-geotagging users with over one million followers tweeted on 

Twitter in the US2012 data set. Removing the condition for one million minimum 

followers altogether, Table 6-6 shows the top 10 users who have posted at any time 

with coordinate-geotags, together with their number of followers. The average 

number of followers for coordinate-geotagging users in the US2012 data set (Table 

6-6), after the top three positions, is generally around one order of magnitude 

lower than that for the top 10 most followed users (Table 6-5, p280). 

The pattern is broadly repeated, with larger orders of magnitude, when examining 

non-coordinate-geotagged and coordinate-geotagged tweets made by well-

followed users during the 2014 Scottish Independence Referendum (Table 6-7, 

p282). It appears that coordinate-geotagging users, and the messages they create, 

have lower reach in terms of follower count than the most prominent users of 

Twitter, most of whom choose to tweet without coordinates. Not only do few users 

overall choose to coordinate-geotag their interactions (Section 5.2.1, p188) but 
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those who do so are much less widely-followed than their non-coordinate-

geotagging peers. 

Table 6-7 – SCOT2014: Top 10 users posting without/with coordinate geotagged messages 
on Twitter by number of followers 

Position Without coordinates Followers With coordinates Followers 
1 CNN 14,040,804 EL MUNDO 1,526,046 
2 MTV 9,788,593 Stephanie Pratt 700,942 
3 BBC News (World) 7,288,128 Khaled Abol Naga 694,501 
4 E! Online 6,784,965 Antena3Noticias 681,692 
5 TIME.com 6,161,366 Nigeria Newsdesk 600,726 
6 The New York Times 6,035,089 Cadena SER 447,902 
7 People magazine 5,384,668 Martin Lewis 308,775 
8 Samsung Mobile US 5,155,299 Jon Snow 308,746 
9 Reuters Top News 4,716,883 Eyewitness News 244,571 

10 Perez Hilton 4,564,096 Marc ✌ 213,458 
 

The counts, and positions, of the most-followed users active during OSN recording 

are also highly influenced by contemporary events, with sometimes unexpected 

consequences. Perez Hilton, a gossip columnist who is widely-followed on Twitter, 

made just five tweets recorded during the 2014 Scottish Independence Referendum 

data collection exercise: 

1. @KathieLGifford Fifth Harmony Tells Kathy Lee & Hoda Why They're Better 

Together On The Today Show! http://t.co/TQsEuqqSeb 

2. Fifth Harmony Tells Kathy Lee & Hoda Why They're Better Together On The 

Today Show! http://t.co/NZCYE7gDY3 

3. @FifthHarmony Fifth Harmony Tells Kathy Lee & Hoda Why They're Better 

Together On The Today Show! http://t.co/TQsEuqqSeb 

4. @hodakotb Fifth Harmony Tells Kathy Lee & Hoda Why They're Better 

Together On The Today Show! http://t.co/TQsEuqqSeb 

5. RT @hodakotb: Xo RT “@PerezHilton: @hodakotb Fifth Harmony Tells Kathy 

Lee & Hoda Why They're Better Together On The Today Show! 

http://t.co/x8e4229SuN”  
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All of these tweets appeared in the SCOT2014 data set as their text contained the 

search phrase ‘Better Together’; the campaign slogan of the Unionist ‘Vote No’ 

alliance during the 2014 Scottish Independence Referendum (Appendix A7.3, p435). 

Hilton’s tweets, however, refer to American girl-band Fifth Harmony (2013), whose 

extended play album titled Better Together (Figure 6-22, p278) was released on 18 

October 2013 (Section 6.4.5, p276) early in the data acquisition phase. Without this 

coincidence Perez Hilton’s interactions would not have appeared in the research 

data corpus at all and he would not have appeared at the head of Table 6-5 (p280). 

Skewness in social media networks, and the potential for computerised 

misinterpretation of text based on string-matching rather than intelligent reading, 

highlights methodological problems (Section 3.3, p102) with machine-based 

analysis of large social media corpora, where search terms used for filtering may 

have multiple discursive meanings.  

6.5 Summary 

Exploratory spatiotemporal data analysis and visualisation techniques (Chapter 3, 

p94) have been used to examine large numbers of public-domain OSN interactions 

sampled and stored in this research (Chapter 4, p118) to answer the three research 

questions (Chapter 5, p186) set out in the introductory chapter of this thesis. 

The 46.90GB of OSN data originally exported from DataSift in CSV and JSON formats 

in 2012 and 2014 (Section 4.2.5, p134), later stored in an Oracle 12c database 

(Section 4.3.1.3, p145), has been supplemented by another 5.58GB of augmented 

JSON file output from GATEcloud and CLAVIN-rest, together with a further 6.92GB 

of JSON data streamed directly from AlchemyAPI into the database. Table 6-8 

(p284) shows that data augmentation operations conducted during this research 

(Section 4.4.1, p147) have necessitated the storage of an additional 21.39GB of data 

in Oracle 12c database tables; the OSNDATA database being over 150GB in size. 



Geotagging matters? 

284 

 

Table 6-8 – File output sizes and database table sizes (in GB) for data augmentations used 
in this research 

System File output (GB) In database (GB) 
GATEcloud 5.09 13.21 
AlchemyAPI NA 6.92 
CLAVIN-rest 0.49 1.26 
TOTAL 5.58 21.39 

 

Very large amounts of data are intrinsically hard to digest, yet the ‘perception 

capabilities of the human cognitive system can be exploited by using the right 

visualizations [which can amplify] human cognitive capabilities in six basic ways’ 

(van der Aalst, 2014, p24): 

1. by increasing cognitive resources, such as by using a visual resource to 

expand human working memory; 

2. by reducing search, such as by representing a large amount of data in a 

small space; 

3. by enhancing the recognition of patterns, such as when information is 

organized in space by its time relationships; 

4. by supporting the easy perceptual inference of relationships that are 

otherwise more difficult to induce; 

5. by perceptual monitoring of a large number of potential events, and; 

6. by providing a manipulable medium that, unlike static diagrams, enables the 

exploration of a space of parameter values. 

All of the data analysis and visualisation methods used in this research were 

designed, after van der Aalst (2014), to exploit and amplify the ‘perception 

capabilities’ of the researcher. Not all of them, as van der Aalst notes in his sixth 

point above, are easy to reproduce on paper. Nonetheless, using NLP/geoparsing 

software to conduct text-mining, and SQL in Oracle 12c to data-mine outputs, this 

thesis has demonstrated – through tables, figures and statistics – clear differences 
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between coordinate-geotagging and non-coordinate-geotagging users of two 

popular social media platforms. 

The final chapter, overleaf, concludes this thesis and summarises this work. Data 

sourced from Online Social Networks, more often studied by Computer Scientists 

than Geographers (Figure 2-5, p62), offers many new opportunities for social 

science and geographical research. Several avenues for further and future research 

are highlighted in the concluding chapter, alongside an assessment of the validity of 

the research presented above. 
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7 CONCLUSION 

7.1 Introduction 

Geography matters! Just as Massey & Allen (1984) reaffirmed the relevance of 

geography in socio-spatial, environmental, political and economic spheres, a 

conception of place clearly matters when individuals interact online using social 

media platforms. In the 2012 US Presidential Election and the 2014 Scottish 

Independence Referendum case studies examined here, ~3.5-4.5 million toponymic 

mentions have been identified in around one quarter of the ~8 million interactions 

in the research data corpus. Around one quarter of the ~7 million entities identified 

in ~650,000 distinct URLs – posted, tweeted or retweeted ~3.5 million times – also 

contained toponymically identifiable content. Elections are peculiarly geographic, 

as well as political, events. Voters’ affiliations, and the many attempts made to 

influence or predict them, are often highly correlated with spatially unevenly 

distributed factors such as levels of income or wealth, access to education, age and 

other demographic characteristics, as well as micro-economic and familial effects 

(Johnston & Pattie, 2006). It is, therefore, both unsurprising and reassuring to find 

that electorates and commentators make frequent geographical references online 

during electoral campaigns, and that many of these mentions refer to the ‘swing’ 

states or constituencies whose ballot results typically shape wider political 

outcomes. 

What then of geotagging; does it matter? Geotagging is a relatively recent socio-

technological phenomenon, primarily enabled by the worldwide proliferation and 

usage of GPS-equipped mobile, or smartphone, devices. The increasingly large 

volumes of Ambient (and/or Volunteered) Geospatial Information now available 

(Elwood et al., 2012; Goodchild, 2007; Stefanidis, Crooks, et al., 2013) offer new 

research opportunities for scholars in geography and related social science 

disciplines. Increased scrutiny of ‘Geo-social Networks’ (Bahir & Peled, 2013), and 
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the possibilities they afford for wider geographical analysis, are demonstrated by 

the growing number of academic papers and specialist journals published in the last 

decade or so, many cited and listed as references (p319) to this thesis. Geotagged 

photographic images publicly posted on Flickr have been used to combat wildlife 

poaching in protected areas and in criminological research (Lemieux, 2015). 

Geotagged social media and other ‘Big Data’ have been used to monitor natural 

disaster situations (Burns, 2018; Goodchild & Glennon, 2010). OpenStreetMap has 

been used in the study of the production and ‘prosumption’ of user-generated 

geographic Big Data (Cockayne, 2016). Human interaction data sourced from 

Twitter and, to a lesser extent, Facebook have been used, seemingly, to ‘do 

everything’; from monitoring earthquakes (Crooks et al., 2013) to tracking riots 

(Bonilla & Rosa, 2015; Crampton et al., 2013), helping to demarcate urban areas 

(Yin et al., 2017) and much else besides (see Kapoor et al., 2017, for a recent and 

comprehensive summary of application areas). This proliferation of research 

activity, for example, ‘[delineating] city cores, [gaining] insights into travel plans and 

tourism, [characterizing] urban landscapes, [studying] global migrations or 

[identifying] mobily patterns’, has also been identified by Rzeszewski & Beluch 

(2017, p2), who go on to note that: 

[…] there has been a growing interest in filling the gap in our knowledge 

about the demographics of both the Twitter user population as a whole 

and the subgroup of users that produce (or rather contribute since they 

may not be aware of it) an ambient geospatial information (AGI). The 

former has been addressed on many spatial scales by a range of papers 

with the general conclusion that Twitter users are younger than the 

general population and derive predominantly from urban areas, with 

gender and ethnic biases still visible but becoming less pronounced over 

time. The latter, however, has been given much less attention. 

(Rzeszewski & Beluch, 2017, p2) 
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The present research focuses attention on this comparatively under-researched 

‘subgroup’ of users, who consume, produce and share messages and links 

containing ambient ‘geospatial’ information. The thesis contributes to knowledge 

through a comprehensive analysis and cross-comparison of toponymic mentions in 

the message text and URL link shares of coordinate-geotagging and non-coordinate-

geotagging users interacting online during two data-rich political case study events. 

From this research it is possible to conclude (Figure 7-1, p289) that: 

1. Coordinate-geotagging users make fewer toponymic mentions in message 

text than non-coordinate-geotagging users of two popular OSN platforms; 

2. Coordinate-geotagging users make far fewer URL link shares than non-

coordinate-geotagging users, and; 

3. The content of URLs shared by coordinate-geotagging users makes fewer 

mentions of place than content shared by non-coordinate-geotagging users. 

These conclusions are at odds with the research hypothesis, that coordinate-

geotagging users are the most geographically expressive of all OSN users. Although 

they do actively (or accidentally) coordinate-geotag their Twitter Tweets or 

Facebook Posts, this small group of social media users are not, in the three 

important respects above, representative of all OSN users. Of course, OSN users in 

general (Diaz et al., 2016), and geotagging users in particular (Sloan & Morgan, 

2015), are not thought to be representative of the general population. During 

elections, they are likely to be even less so; probably being younger and living in 

urban areas (Section 6.4.4, p262) and often, according to Barberá & Rivero (2015), 

exhibiting ‘extreme ideological preferences’. 

The research findings presented here imply that geographical outputs (point maps, 

counts or aggregations to larger areal units such as constituencies or states) based 

on searches for specific words, toponyms, #hashtags or @mentions in message text 

or URL link shares, which may readily be mapped using the interaction Latitude and 

Longitude coordinates of Twitter tweets or Facebook posts deposited by 



Geotagging matters? 

289 

 

coordinate-geotagging users (or aggregated to wider areas using a GIS), are unlikely 

to be representative of the spread of all such content within OSNs.  

 

Figure 7-1 – US2012/SCOT2014: Number of toponymic mentions/user identified in 
message text (FB=Facebook, TW=Tweet, RT=Retweet) and linked/shared URL content 

The importance of this conclusion to the academic community and to society, along 

with suggestions for further research in this area, are discussed in the remaining 

sections of this chapter. 

7.2 New opportunities 

Twitter’s introduction of tweet geotagging functionality in 2009, closely followed by 

Facebook’s broadly similar system for posts in 2010, offered new opportunities for 

researchers and others (governments and their surveillance agencies chief amongst 

them) seeking to mine potentially vast depositories of digital, time-stamped, 

textual, audio-visual and, in some cases, explicitly geospatial human-made content. 

However, research into OSN usage, and geographical OSN usage in particular, is still 

in its relative infancy. Advances in platform operators’ systems, massively increased 

usage of social media websites and the development of technologies better able to 

store and analyse available digital ‘Big Data’ have enabled this research. These 

developments are thought to have created ‘a paradigm shift to computational 

social science’ (R. M. Chang et al., 2014), criticised by some as a form of ‘digital 
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positivism’ (Fuchs, 2017a), in many ways echoing academic Geography’s much 

earlier battles (I. Burton, 1963; Harvey, 1973) with its ‘quantitative revolution’ 

(Cresswell, 2013, 2014; Johnston et al., 2014; Wyly, 2014). 

Graham & Shelton (2013, p257) have argued that ‘geographers have long struggled 

over what the appropriate ends of our scholarship should be, how we should be 

doing it, and how to accommodate competing claims to truth, especially in the 

context of new technologies opening up new methodological possibilities.’ New 

forms of geographical data, such as the coordinate-geotags or toponymic mentions 

deposited on OSN websites and applications by billions of individuals, do offer new 

possibilities for research. By necessity these investigations tend to rely very heavily 

upon computerised analytical methods, as ‘massive datasets of communication are 

challenging traditional, human-driven approaches to content analysis’ (S. C. Lewis 

et al., 2013, p34). Nonetheless, while alert to the possibility that ‘Big data give us a 

quickly expanding, shallow view of the vast horizontal landscape of the desert of 

the present real’ (Wyly, 2014, p28), the research presented here does successfully 

move ‘beyond the geotag’, as Crampton et al. (2013) have advocated, by: 

1. going beyond social media that is explicitly geographic;  

2. going beyond spatialities of the ‘here and now’;  

3. going beyond the proximate;  

4. going beyond the human to data produced by bots and automated systems;  

5. going beyond the geoweb itself, by leveraging these sources against 

ancillary data, such as news reports and census data. 

It is well-known, and has been known for some time (Z. Cheng et al., 2010; Leetaru 

et al., 2013), that only a small percentage (typically ~1-2% of publicly-available 

Twitter tweets, and a lower percentage of Facebook posts) are geotagged with 

Latitude and Longitude coordinates. Much has been learnt by studying these 

records, as even small percentages of the enormous number of social media 

messages generated every day yield very large absolute numbers of geotagged 
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interactions. It has been suggested that ‘this one percent [of coordinate geotagged 

records] is already large enough’ for meaningful analyses (Jiang et al., 2016, p349), 

and in some application domains (e.g., using geotagged messages or images as 

proxies for population location and movement) this may well be true. Somewhat 

surprisingly, however, comparatively little is known about the characteristics of 

these coordinate-geotagging users. Are their messages, for example, more widely 

shared than those of their non-coordinate-geotagging peers? Is their personal 

interest (or mistake) in sharing their precise location also manifested in high levels 

of geographicality in written text and shared links? Does this small class of 

coordinate geotagging users, at a more fundamental level, matter; either by 

offering a representative, but uniquely spatialised, view of OSN users in general, or 

by forming an important subset of OSN users who, through their precisely stated 

locations, might be held in particularly high or low esteem by other users of social 

network sites? 

Developments in Geographic Information Retrieval (Purves et al., 2018), combined 

with an exploratory case study methodology and comprehensive technical 

approach (Chapters 3, p94 and 4, p118), have helped to answer the first of these 

two questions. Coordinate geotagging users are much less widely followed (Section 

6.4.6, p279) than others on OSNs and, somewhat counter-intuitively, express 

themselves less geographically than others in their messages and through the 

choice of URLs they link to and choose to share (Section 5.2.3, p205). For the first 

time, the comprehensive analysis of social media interactions presented here, has 

revealed important differences in the posting behaviour of coordinate-geotagging 

and non-coordinate-geotagging users during two political case study events. The 

more fundamental question, whether geotagging matters, is not so easily 

answered. To a professional geographer, the vast number of coordinate pairs now 

deposited online by social media users appears highly propitious. On a massive 

scale, arguably for the first time in human history, it is possible to know who is 

saying what, when and where. Unfortunately though, as detailed earlier (Section 
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5.2.1, p188) and remarked upon by Paraskevopoulos & Palpanas (2016, p1), ‘only a 

very small percentage of [OSN] posts are geotagged, which significantly restricts the 

applicability and utility of [many] applications.’ Low rates of coordinate-geotagging 

in OSN data, and the unrepresentativeness of coordinate-geotagging users, do limit 

the ‘applicability’ of any analyses based solely upon geotagging users’ message text, 

metadata or spatial location in political contexts. When examining politicised 

communications made on social media networks, or determining how political 

opinion or (mis)information may be geographically tracked across these systems, it 

appears that geo matters, but tagging matters much less. The following section 

discusses these limitations in more detail. 

7.3 [Geo]tagging, politics, prediction and tracking 

The research detailed in this thesis was partly inspired by much earlier work 

(Section 1.5.1, p22) to develop and publish an electoral information website 

covering the first UK General Election of the Internet era (Tear, 1997). It was 

apparent even then, when operating the site, that patterns of online political 

information consumption were not geographically uniform. The extraordinary 

revelation that a third-party state, Russia, or Russian-backed ‘trolls’, attempted to 

influence the outcome of the US 2016 Presidential Election by geo-targeting social 

media sites with a variety of inflammatory messages (Schrage, 2017; Stretch, 2017), 

even aiming to promote a secessionist California (BBC News, 2017c) and reaching 

up to 126 million Facebook users (BBC News, 2017b), aptly demonstrates the 

originality of this research and the continuing relevance of geography in modern 

politics. As the Internet developed, and Web 2.0 participation succeeded Web 1.0 

publication (O’Reilly, 2005), it had appeared increasingly likely that techniques 

widely-used by marketing professionals (geodemographic profiling, geographical 

targeting, bespoke messaging) could, and probably would, be deployed online in an 

attempt to influence turnout or voting behaviour during democratic elections. The 
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Facebook / Cambridge Analytica data misuse and political targeting scandal, which 

broke early in 2018, clearly reveals that this has, indeed, occurred. 

Using new techniques in text-mining and ‘Big Data’ analysis this research examines 

how geography and geotagging might aid the understanding of politically discursive 

information sharing during elections, and whether OSN-enabled socio-geo-

technological developments can be used to accurately track the geographical 

spread of political opinion or (mis)information online. The detailed analysis and 

evaluation of case study data presented here, from two recent electoral events, 

suggests that tracking of this type using coordinate-geotagged OSN interactions 

alone is not possible. In both the 2012 US Presidential Election and the 2014 

Scottish Independence Referendum there are too few coordinate-geotagged 

records to map political behaviour, information consumption or sharing at a 

granular level. While geographical tracking of opinion or URL link/sharing may be 

attempted using coordinate-geotagged OSN interactions the ‘toponymic 

unrepresentativeness’ of geotagging users in message text and link/shares hinders 

such efforts. Coordinate-geotagging users link to much less external 3rd party 

content than non-coordinate-geotagging users of either of the two OSN platforms, 

Twitter and Facebook, examined during the two political case study events and also 

make fewer references to place in their message text. In addition, while enhanced 

geo-referencing using NLP and geoparsing software (Chapter 5, p186) may 

successfully find locations in text these approaches cannot easily, or accurately, 

determine locational meaning; whether the locations mentioned are ‘lived in’, 

‘visited’, ‘worked at’ or ‘talked about’ more generally. Human behaviour exhibits a 

strong diurnal influence (S. A. Golder & Macy, 2011) which is also visible in social 

media data (Morales et al., 2017). Figure 7-2 (p294) shows the number of 

interactions recorded by time of day and day of week during the 2014 Scottish 

Independence Referendum. Most days, most posts are made during day time, 

increasing late afternoon into evening before tailing off in the small hours of the 

morning, coinciding with human periods of activity and sleep. 
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Figure 7-2 – SCOT2014: Number of social media posts per hour by times of day (light=day 
time; dark=night time) and day of week (smoothed by excluding counts from election day 

Thursday 18 September into Friday 19 September 2014) 

 

Figure 7-3 – SCOT2014: Number of coordinate-geotagged social media posts per hour by 
times of day (light=day time; dark=night time) and day of week (smoothed by excluding 

counts from election day Thursday 18 September into Friday 19 September 2014) 
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Coordinate-geotagged interactions (Figure 7-3, p294) exhibit a similar pattern, 

raising the obvious need to add ‘home’ and ‘away’ attributes to geo-locations, as 

voting normally takes place somewhere near home. A significant body of work is 

now devoted to this research question, analysing local commuting patterns 

(McNeill, Bright, & Hale, 2017), using ‘end to end neural networks’ (Lau, Chi, Tran, & 

Cohn, 2017), ‘grid-based classifications’ (Ajao, P, & Hong, 2017), ‘geo-temporal’ 

data (Longley & Adnan, 2016), NLP and network approaches (Alonso-Lorenzo et al., 

2016), ‘geo-location history’ (Poulston et al., 2017) and even ‘local’ and ‘global’ 

references to celebrities in message text (Ebrahimi, ShafieiBavani, Wong, & Chen, 

2017) to more accurately infer the positional meaning of any given spatial or 

detected locational reference found in users’ OSN communications. Advances in 

addressing the ‘home/away’ problem may be particularly useful in several 

application domains (e.g., transport planning) and would assist in the tracking of 

politicised opinion and (mis)information sharing on social media sites. However, 

even these advances are unlikely to enable any form of accurate electoral 

prediction based upon social media data sources; especially when Twitter is used as 

the only, or major, source of such interactions. 

Jungherr, Schoen, Posegga, & Jürgens, (2016, p1) have stated that in ‘all tested 

metrics, indicators based on Twitter mentions of political parties differed strongly 

from parties’ results in elections or opinion polls.’ The authors advise using ‘caution’ 

in any attempt to infer political outcomes from Twitter data, the most commonly 

used source of OSN ‘digital trace data’, and ‘question the power of Twitter to infer 

levels of political support of political actors.’ This advice, and a similar note of 

caution, has been strongly expressed by Gayo-Avello (2012a), in a provocatively 

titled paper, which identifies repeated failings in many of the works attempting to 

predict electoral outcomes using Twitter data. Reviewing 17 papers, Gayo-Avello 

outlines eight ‘Flaws in Current Research regarding Electoral Predictions using 

Twitter Data’ which may be summarised as follows: 
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1. Research presents a post-hoc analysis not a prediction 

2. Incumbency plays a ‘major role’ in most elections 

3. There is no common currency for ‘counting [Twitter] votes’ 

4. There is no accepted way to compare predictions with reality 

5. Sentiment analysis is ‘applied as a black-box and with naïveté’ 

6. All Tweets are presumed ‘trustworthy’ when they are not 

7. Demographics are neglected 

8. Self-selection bias is ignored 

Results from a detailed ‘post-hoc’ analysis of the 2012 US Presidential Election and 

2014 Scottish Independence Referendum data collected as part of this research 

programme reasserts the continuing presence of Gayo-Avello’s ‘Flaws’. In addition, 

there are a) significant difficulties in ascribing geographical meaning to coordinates 

or detected geo-locations, and; b) further, and deeper, difficulties in deriving 

meaning from short, unstructured text using computerised methods. 

Phillips, Dowling, Shaffer, Hodas, & Volkova (2017, p1) have stated that ‘[social 

media] forecasting is limited by data biases, noisy data, lack of generalizable results, 

a lack of domain-specific theory, and underlying complexity in many prediction 

tasks.’ The conclusion, that geo-referenced OSN sentiment does not offer any 

locally predictive power for electoral outcomes, is not a new contribution to 

knowledge. However, the findings which show (Chapter 5, p186) that the message 

text and link/shares of coordinate-geotagging users are somewhat atypical of those 

produced by the majority of OSN users are both original and significant. We now 

know that, during elections, geographical and behavioural targeting of social media 

users has been conducted by political parties (Moore, 2016), companies (Albright, 

2017; Cadwalladr, 2017) and even third-party states (Howard et al., 2018). These 
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recent revelations confirm the validity of the geographical perspective adopted in 

this research and suggest that much further research work (Section 7.5, p299), 

alongside several changes in policy (some suggested in Section 6.3, p238), are 

required to more effectively track the spread of politicised (mis)information online. 

Before these topics are discussed in greater depth, later in this chapter, the 

following section offers some reflections and criticisms of the work presented 

above. 

7.4 Reflections and criticisms 

This thesis presents results from a study explicitly designed to test a clear 

hypothesis – that coordinate-geotagging users are the most geographically 

expressive of all OSN users – by addressing three research questions: 

1. How can baseline ‘geographicality’ be assessed and categorised in OSN 

data? 

2. Does NLP-detectable ‘geographicality’ in message text increase in line with 

‘spatiality’? 

3. Does NLP-detectable ‘geographicality’ in linked/shared 3rd party content 

increase in line with ‘spatiality’? 

Large volumes of social media data collected during two recent electoral events 

have been analysed to answer RQ1-3. The classification of PGI metadata fields, 

particularly from Twitter interactions, answers the first question (Section 5.2.1, 

p188). In both RQ2 (Section 5.2.2, p190) and RQ3 (Section 5.2.3, p205) results have 

shown that there is no support for the assertion that highly spatialised, coordinate-

geotagging, users of social media sites are particularly geographically expressive 

whether in message text or in the choice of material they link to and share. In the 

two case study events examined here, the reverse is true. 

Two main criticisms may be levelled at this research: 
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1. The data are old, and; 

2. Research methods rely heavily on computerised techniques. 

Addressing the first criticism is straightforward. New data could be collected from 

OSN interactions deposited around the time of another major election (or more 

generally) and the analyses re-run to determine whether the results reported here 

still hold true. While appealing, doing so would further extend the period of study; 

making the existing data older still and delaying submission of the thesis. Collecting 

and examining new data to reaffirm these results is, hence, either a task for the 

future or for other researchers. 

The second criticism is more intimately bound with the research design (Chapter 3, 

p94) and research methods (Chapter 4, p118) used in this study. A hybrid case 

study-exploratory design using large amounts of digital data visualised and analysed 

using computational techniques is bound to encounter the types of criticisms 

eloquently expressed by Wyly (2014) and Fuchs (2017a, 2017b). These centre 

around the dangers of a ‘new quantitative revolution’ where ‘models arrive 

brandishing people – collections of thousands and millions of socially networked 

digital individuals in an expanding neoliberal noösphère’ (Wyly, 2014, p36). Models 

exist, it is suggested, in an atheoretical vacuum where social media are not 

adequately located ‘more generally within a model of society’ (Fuchs & Trottier, 

2015, p121). Fuchs (2017a) argues in his paper, so-titled, for a move ‘From digital 

positivism and administrative big data analytics towards critical digital and social 

media research!’ Fuchs (2017a, pp38-39) points out that research by Peng, Zhang, 

Zhong, & Zhu (2013) has shown that ‘only 31% [of 27,340 Internet Studies articles 

published between 2000 and 2009] cited theoretical works [leading to a tendency 

to] engage with theory only on the micro- and middle-range [neglecting] the larger 

picture of society as a totality.’ 

While this thesis does not present a theoretical piece of research work, the work of 

many theorists is referenced here (Castells, 2009; Dahlgren, 2005; Deleuze et al., 
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2004; G. Goldberg, 2010; Habermas, 2011; Kuhn, 1970; Papacharissi, 2002, 2010; 

Stahl, 2004). The identification of conceptually key political (Section 2.2.2.4, p60), 

communications (Section 2.5, p72), geographical (Section 2.6, p77) and technical 

(Section 2.7, p83) themes is deliberately designed to introduce cross-disciplinary 

theoretical elements to the research. Many other references (Barberá et al., 2015; 

Bimber, 2014; Diehl et al., 2016; Fuchs, 2017b; Harris & Harrigan, 2015) deal with 

the perplexing question of whether exposure to, or sharing of, online social media 

content actually has any great impact on the outcome of electoral events, and yet 

more (References, p319) detail technical approaches used to help answer these 

questions. As the field of Internet Studies or Web Science (Berners-Lee, Hall, 

Hendler, O’Hara, et al., 2006) matures theory can be expected to build. It seems 

likely, as Internet activity is human-made, even including the pernicious ‘bots’ 

designed to sway public opinion (Marechal, 2016), that theories will be based 

around several of the inter-disciplinary social science and technological strands 

detailed in this thesis. From the standpoint of academic geography, this thesis 

therefore makes an important contribution to work in a much wider subject area. 

Further, and future, research ideas based on this grounding are detailed in the 

following section. 

7.5 Further (and future) research 

The earlier recommendations of Crampton et al. (2013), that OSN research should 

move beyond the geotag, have been adopted here. In doing so, this study has 

examined the production of explicitly spatial and geographically referenced 

material in OSN interactions and drawn some important conclusions regarding 

differences between coordinate-geotagging and non-coordinate-geotagging users. 

Through a detailed examination, not only of geographical coordinates but of heavily 

linked websites and toponymic mentions of place in message text and 

linked/shared content, the results go some way towards meeting the call for a 

‘critical digital social and media research’ recently advocated by Fuchs (2017a). 
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Fuchs (2017a, p43) has warned that ‘Big data analytics’ positivism […] fails to 

understand users’ motivations, experiences, interpretations, norms and values’ and 

suggests that ‘We do not just have to understand what people do on the Internet 

but also why they do it, what the broader implications are, and how power 

structures frame and shape online activities.’ This should be a primary focus for any 

future research. It has become clear during the course of this study that simply 

analysing the ‘digital trace data’ of OSN interactions made on Twitter or Facebook 

does not provide sufficient insight into the motivations behind individuals’ 

production or consumption of social media content, whether (or why) this content 

contains implicit geographical or explicit spatial references, or not. 

Tasse et al. (2017, p1) have noted that ‘there is currently little understanding of 

what people geotag on […] popular social media sites not centered around location 

[including Facebook, Instagram, Twitter, Snapchat, and Flickr], and why.’ While 

suggesting that ‘people geotag consciously and intentionally, they geotag in 

uncommon places, they primarily do so to communicate and show where they’ve 

been, and they geotag soon after being at the place’, Tasse et al.'s (2017) study 

usefully draws conclusions by mixing large-scale data analysis with a qualitative 

‘free-response’ survey drawn from 4,119 ‘prolific [geotagging] tweeters’. Ethical 

decisions made during the course of this research (Section 3.4, p111; Appendix 4, 

p419), together with limited funding availability, precluded such a mixed approach 

here. However, the integration of ‘Big Data’ analysis with ‘traditional methods’ 

should be encouraged. As Fuchs (2017a, p43) has noted, ‘Digital methods do not 

outdate but require traditional methods in order to avoid the pitfall of digital 

positivism. Traditional sociological methods, such as semi-structured interviews, 

participant observation, surveys, content and critical discourse analysis, focus 

groups, experiments, creative methods, participatory action research, statistical 

analysis of secondary data and so on, have not lost importance.’ Other suggested 

areas for further or future research are more narrowly focused on specific problems 

encountered here. These may be grouped into three broad themes: 
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1. Localness – A key assumption of many investigations using spatially 

referenced, or referenceable, OSN data is the premise that interactions have 

been deposited locally, that ‘a unit of social media VGI always represents 

the perspective or experience of a person who is local to the region of the 

corresponding geotag’ (I. L. Johnson et al., 2016, p515). This, of course, is 

not always the case. In the two case study data sets examined here the most 

prolific coordinate-geotagging user, Mulder1981, later ‘unmasked’ by The 

Herald (2017) newspaper as a Scottish Tory Councillor and ‘influential 

BritNat Twitter troll who boasts about his manhood online’, posted from 

2,503 locations, largely in Scotland but from as far afield as Turkey and the 

West Coast of America. There are 2,353,010 non-coordinate-geotagging and 

just 122,253 coordinate-geotagging users in the research data corpus, a 

figure and percentage (4.94%) which is elevated by the exclusively spatially 

sampled US2012_GEO Stream (Section 4.2.4.1, p126), without which there 

would be only 51,475 coordinate-geotagging users (2.19%) across the two 

events. Amongst all coordinate-geotagging users, in both case study events, 

82,771 have posted from only one location and 39,482 from multiple 

locations, the median number of geotagged posts being 2 in this latter 

group. Research published by I. L. Johnson et al. (2016) has confirmed that it 

is not always correct to assume that geotagging users are spatially proximal 

to ‘home’ locations, with a rate of 75% (lower in rural areas) suggested. 

When most geotagging users make only one post, or a small number of 

posts, during reasonably extended periods of data collection (2 months or 

more in both of the case studies examined in this research) imputing home 

locations with accuracy is difficult. If ~25% of geotaggers are not at ‘home’ 

locations when making their posts, and coordinate-geotagged interactions, 

as shown here, make fewer mentions of geographical entities in text or link 

shares than non-coordinate-geotagged interactions, then further difficulties 

arise. The problem of lower NLP-detectable toponymic geographicality 

amongst the most spatialised of coordinate-geotagging users, reported here 
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(Chapter 5, p186), suggests that yet more work on ‘localness’ and ‘locational 

meaning’ in space or place-based OSN data is required. 

2. Geoparsing – Earlier studies into the difficulties of successfully geoparsing 

microblog text (e.g., Gelernter & Mushegian, 2011; Shi & Barker, 2011) have 

been extended in many directions (e.g., Kordopatis-Zilos, Papadopoulos, & 

Kompatsiaris, 2017; Poulston et al., 2017; Purves et al., 2018) and usefully 

summarised by Gritta et al. (2018). Despite the development of a 

multiplicity of techniques aimed at extracting spatial meaning from text the 

challenge remains considerable; ‘dynamic’ names exist, local slang may be 

used and ambiguity in place naming creates difficulties in gazetteer-based 

approaches (Kordopatis-Zilos et al., 2017). Language-modelling techniques, 

based on NLP and machine learning, face other problems; the need for 

software able to detect possibly geographical terms in short or 

ungrammatical text and the availability of training datasets for use in 

probabilistic modelling. Other approaches, e.g., using mentions of local 

celebrities in users’ message text (Ebrahimi et al., 2017), have claimed some 

success but overall the picture remains somewhat confused. Crucially, and 

despite the efforts of several leading researchers (e.g., Smart, Jones, & 

Twaroch, 2010; Wei Zhang & Gelernter, 2014), it remains difficult to access 

or run the most up-to-date geoparsing systems, many of which have been 

developed against ‘laboratory data and unlike in wider NLP are often not 

cross-compared’ (Gritta et al., 2018, p603). Further advances in text-based 

geoparsing are inevitable, as this is a particularly active research area. 

However, unless teams publish and document their code comprehensively 

many non-specialists will continue to use older-generation geoparsing 

systems simply because they work dependably, even if their results may not 

be quite as good as the latest ‘bleeding edge’ technologies. 

3. Ethics – Astonishingly, 2,436,167 individuals have unwittingly contributed to 

this research. It would have been unthinkable to consider using such a vast 

pool of respondents to survey research in a doctoral thesis twenty years 
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ago, and probably reasonably implausible ten years later. Large, individual-

level data sets of this type (even if sparsely populated, Section 6.4.3, p255) 

have historically been the preserve of government departments or large and 

well-funded research agencies. Such data sets generally arose either from 

infrequent questioning (e.g., the decennial Census) or were created as by-

products of administrative processes, e.g., crime or health records, 

subsequently aggregated to wider areal units to avoid the unwanted 

identification of individuals. The OSN interactions considered here, 

however, do not come in response to a questionnaire or more traditional 

fieldwork approach requiring informed consent (Section 3.4, p111). 

Researchers, and others, may now analyse huge numbers of social media 

messages available continually via platform operators’ APIs or data 

aggregation companies. Messages and downloadable metadata bundles 

may have been created by users who are comfortable posting in the public 

domain or, more worryingly, by those who may not have adjusted their 

personal privacy settings sufficiently to prevent inadvertent public posting 

of their material (Woodfield, Morrell, Metzler, & Blank, 2013). Ethical issues 

surrounding the use of social media data in research have been discussed at 

University conferences (Suguira et al., 2016) and published in both the 

sociological (Boyd & Crawford, 2012; Halavais, 2015; Williams, 2015) and 

medical literature (S. Golder, Ahmed, Norman, & Booth, 2017), where 

ethical good practice is considered paramount. A general conclusion is that 

it ‘remains unlikely that a consensus on the ethical considerations on using 

social media research will ever be reached. Each Internet research project 

requires an individual assessment of its ethical issues and selection of the 

most appropriate methodological approach’ (S. Golder et al., 2017, p13). A 

similarly pragmatic ethical approach has been adopted in this study (Section 

3.4, p111; Appendix 4, p419). Individuals, however, may be surprised by the 

amount of ‘digital trace data’ they deposit online, and no more so than in 

the case of geographical data where, for example, Tasse et al. (2017) have 
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reported that some ‘prolific geotaggers’ were completely ‘unaware that 

they were posting geotagged tweets’. Locational privacy appears to be 

highly-valued by Web and social media users in a world of spontaneous, and 

usually anonymous, commentary (Cottrill, 2011; Tsou, 2015). As increasingly 

sophisticated geoparsing approaches now attempt to locate individuals 

using techniques bordering on surveillance (e.g., all of Tony’s friends asked 

‘How was the Hemingford Arms last night?’ and most mentioned other 

locations in North London; therefore, Tony probably lives in Islington), 

spatio-ethical policies will also require further research. 

In addition to the above, several authors (Hutton & Henderson, 2018; Kinder-

Kurlanda, Weller, Zenk-Möltgen, Pfeffer, & Morstatter, 2017) have expressed 

concern regarding the reproducibility of OSN research; their arguments centring on 

data size and availability and continued access to the often specialised and 

frequently updated methods and systems employed in analysis (Zelenkauskaite & 

Bucy, 2016). While many key workings, programmes and SQL queries are detailed in 

this thesis they cannot all be reproduced. The Oracle 12c database, backed up in 

binary format using EXPDP (Dietrich, 2014), requires ~150GB of storage. Six virtual 

machines used in production take another 150GB. Nearly 100 Oracle SQL scripts 

have been saved, and many of these incorporate multiple individual SQL 

statements. A Tableau repository of 233MB holds over 40 workbooks and 

references further sets of Microsoft Excel spreadsheets, database views and 

queries. QGIS map files and other data require an additional 833MB of storage. 

Iterative workings saved along the way, including raw data, database dumps and 

NLP/geoparsing output total a further ~1TB. Around ~8m rows of OSN data stored 

in ~50GB have created a ~2TB project. Some code developed in this research works 

now, e.g., the bespoke Ruby scripts used to call the Cloud-hosted AlchemyAPI 

system, requiring a software key provided specifically for this project, but may 

become obsolete in the future. The Twitter and Facebook OSN data themselves 

should not, according to the terms of the licence agreements adhered to in this 
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research (Appendix 5, p424), be passed on to third parties in their entirety but may 

be regenerated from source (at some greater cost, since the data are now historic) 

using unique identifiers embedded in interaction metadata. Difficulties in 

transferring, storing and re-running analyses to achieve reproducible results in 

social media Big Data research are a particular concern (Hutton & Henderson, 2018; 

Kinder-Kurlanda et al., 2017) and should be addressed in future work. At a practical 

level, solutions could include the use of ‘digital preservation’ techniques (Maemura, 

Moles, & Becker, 2017) as recently demonstrated by the European Union’s E-ARK 

system (Thirifays et al., 2018) for scientific computational archiving. 

7.6 Contributions to knowledge 

This research makes contributions to knowledge in three main areas, summarised 

in numbered lists, in turn, below. 

7.6.1 Technological contributions 

1. The work detailed in this thesis demonstrates that one, reasonably technically 

competent, researcher in geography can integrate and combine several 

complex software systems and pipelines to store and analyse large numbers of 

social meda interactions. Many social media Big Data projects are the preserve 

of Departments of Computer Science. However, Geography Departments, and 

the staff that work in them, have much to offer in social media subject areas 

and should not feel discouraged from pursuing such investigations. 

2. Many social media geo-investigatory Big Data projects also, typically, use data 

sourced from just one platform, Twitter, even though it is far from the largest 

online social network. Facebook, which is, has not been so widely-studied in the 

literature (Stock, 2018). This research examines coordinate spatiality, and 

compares and contrasts NLP-detectable geographicality, in OSN interactions 

sourced from both Twitter and Facebook platforms. 
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a. The longer messages allowed on Facebook yield ~4 NLP-detectable 

toponymic mentions/interaction against ~1 in every Twitter tweet. 

Although increasingly difficult to access (Hogan, 2018), Facebook posts 

offer greater geographical value, once geoparsed, than Twitter tweets. 

This situation may change over time following Twitter’s newly increased 

limit of 280 characters/tweet; up from the 140 character limit used since 

2006 (Jackson, 2017). 

3. Three separate NLP/geoparsing systems have been used in this research: 

a. Two, TwitIE on GATEcloud and CLAVIN-rest, produce broadly 

comparable results against interaction message text; 

b. One, AlchemyAPI, is particularly well-suited to Information Extraction of 

linked/shared URL content. 

c. Code listings in this thesis show how these systems may be used and 

how to mine the augmented data they produce. 

d. Much additional technical information, including working virtual 

machines etc., is available upon request. 

4. Collaborative work with researchers at the University of Sheffield has enhanced 

the functionality of GATEcloud’s data ingestion system: 

a. Researchers may now easily retain unique identifiers in input and output 

cycles on GATEcloud; 

b. Accuracy of results will be improved through the simplification of 

database joins enabled by this development. 

5. Data-mining and sparsity analysis in SQL shows that Big Data are far from 

complete, with many NULL values observed. This finding, and the identification 

of well-populated fields in OSN data, should help to guide future research. 

7.6.2 Substantive contributions 

1. Published literature reviews show that few studies have examined the interplay 

between geography and politics in online social media (Steiger, de Albuquerque, 
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et al., 2015). Recent events suggest that this situation is bound change. 

Evidence of Russian state-sponsored interference in the 2016 US Presidential 

election and the Facebook / Cambridge Analytica scandal, which broke in 2018, 

will require much new research into online geo-behavioural targeting. By 

evaluating the potential for geographically tracking politicised discourse over 

social media networks, using data sampled during two earlier electoral events, 

this research a) demonstrates significant contemporary relevance, and; b) may 

be used to guide further research and/or help formulate future policy responses 

aimed at safeguarding ‘free and fair’ democratic processes. 

2. The calculation of median values, from ~8 million records, shows that 

coordinate-geotagging users of Facebook are ‘liked’ slightly less (1.33 vs. 150) 

than corresponding non-coordinate-geotagging users. On Twitter, coordinate-

geotagging users have fewer ‘friends’ (325 vs. 345) and fewer ‘followers’ (275 

vs. 348) than non-coordinate-geotagging users of the platform. 

3. Calculating maximum values from ~8 million records, the top 10 non-

coordinate-geotagging users on Twitter posting during the two case study 

events have a following, typically, one order of magnitude or more greater than 

that of the corresponding top 10 coordinate-geotagging Twitter users. 

4. Few users, on either of the two OSN platforms investigated during the two 

political case study events, coordinate-geotagged their social media messages 

and most coordinate-geotagging users made only one coordinate-geotagged 

interaction in the sampled data sets. 

5. Analysis of the case study interactions, using three NLP/geoparsing systems, 

data-mining in SQL and statistical analysis in R, demonstrates that highly-

spatialised, coordinate-geotagging, users of OSNs are not always the most 

geographically expressive: 

a. Coordinate-geotagging users make fewer references to place in their 

message text than other users; 

b. Coordinate-geotagging users link to and share external content 

containing fewer mentions of place in text, and; 
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c. Coordinate-geotagging users, overall, make far fewer links to shared URL 

content than other users of these platforms. 

6. In addition: 

a. Fusion of coordinate-geotagged ONS interactions to US and UK Census 

data suggests that users posting spatially are likely to originate from 

areas with a generally more youthful and urban population profile. 

b. In the US, geodemographic profiling suggests that OSN users may well 

originate from areas with a high proportion of non-institutionalised 

population, e.g., student halls of residence or nursing accommodation 

etc. 

c. Analysis of patterns of geographical retweeting suggests that the re-

posting of social media content may be comparatively localised during 

electoral events, particularly in the longer-running case of the 2014 

Scottish Independence Referendum. 

7. Taken together, the findings above imply that tracking or mapping the spread of 

places, news, views or opinion by searching for phrases or toponyms in message 

text created by coordinate-geotagging users alone, or searching for specific URL 

links shared alongside these messages, does not provide an adequate proxy for 

tracking the geographical spread of all politically discursive material created and 

shared online over social media networks. 

7.6.3 Policy contributions 

1. Senior politicians (e.g., US Senator Mark Warner, quoted in Charter's, 2018, 

report for The Times), and even an anonymous Guest Contributor (2015) to 

Adweek magazine, have both highlighted the unregulated ‘Wild West’ situation 

in social media advertising; something the senior politician expects will soon be 

‘coming to an end’ and the advertising figure has said needs ‘taming’. Writing in 

2015 the Guest Contributor noted that while ‘all other forms of advertising have 

strict metrics and accountability [s]ocial is such a new space that no one has 
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taken the initiative to create a system for it to thrive alongside the more 

traditional advertising mediums.’ Advertising ‘flight schedules’ have historically 

allowed regulators to track political marketing (and spending) on ‘traditional’ 

media, including television, radio and newspaper press. ‘Algorithmic 

advertising’ on Web or social media channels makes this harder (Eslami, Krishna 

Kumaran, Sandvig, & Karahalios, 2018) as advertisements, including political 

marketing, may only be shown to individual users if certain behavioural or 

geographical conditions are met. Electoral regulators in the US, UK and 

elsewhere will need to gain more understanding of how online or social media 

advertisements are targeted. Regulation or legislation may well be required to 

compel political advertisers, website or social media platform operators, to 

release this information. 

2. Geographically, as this research has demonstrated, it is difficult to track the 

spread of political opinion, (mis)information or campaign advertising 

disseminated over online social media channels. As content may be targeted at 

areas as much as at individuals it is desirable to know, with a reasonable level of 

spatial precision, where content is being consumed or shared. 

3. This research recommends encoding a lower-resolution Latitude and Longitude 

coordinate pair alongside all social media interaction metadata or, e.g., a lookup 

to a uniquely identifiable 1x1km grid square. Doing so would enable reasonably 

granular tracking of the geographical diffusion of online social media content 

without adversely affecting personal locational privacy. Availability of this 

additional data point could, e.g., be restricted to electoral regulators and/or 

accredited researchers, and would enable geographical analysis and mapping of 

patterns of online social media information consumption in much the same way 

that traditional ‘flight schedules’ allow the regional tracking of television, radio 

or newspaper advertising. 

It is hoped, particularly in the latter category, that the policy recommendations 

offered alongside this research work (Section 6.3, p238) may prove useful when 
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considering regulatory, legal or technical reponses aimed at ending the ‘Wild West’ 

phase of social media’s early history. No-one, this author included, wants to live in a 

democracy subverted by power-hungry politicians or external agents; seeking, 

being promoted to, or winning office on false premises. Now we know just how 

much, collectively, we may have been manipulated by Cambridge Analytica, Russian 

state-sponsored agents or party campaign teams we must, collectively, devise 

better systems to track online geo-behaviourally targeted political material both for 

the good of society and to ensure future, free and fair democratic elections. 

7.7 Contributions to debate 

Attempts to ‘segment’ voters and micro-target political communications during 

electoral campaigns are not new. Blaemire (2018) has outlined a chronology in 

which messaging units staffed by ‘backroom’ politicians have been replaced by 

‘campaign professionals’ using computerised databases, geodemographic targeting 

and, most recently, Internet technologies; the latter presenting ‘enormous 

opportunity’ for campaign teams. The shift to geodemographically targeted voter 

engagement occurred in the late 1990s and early 2000s in the UK, lagging earlier 

developments in the US. The UK’s two major political parties, Conservative and 

Labour, have both made extensive and largely uncontroversial use of Experian's 

(2018) MOSAIC discriminator for well over a decade. The Labour Party's (2018, p14) 

Campaigners’ Handbook states that MOSAIC is used to create ‘broad segmentations 

of the electorate depending on electors life situations and a range of other 

modelled scores which are produced by the Targeting and Analysis team.’ These 

scores are used to predict the likelihood of localised voter turnout, identify areas of 

policy interest and determine ‘optimal times’ for canvassing. The Conservatives’ use 

of MOSAIC data are not recorded in a publicly accessible document but Mark 

Wallace (2015), writing on the Conservative Home website, has detailed the party’s 

use of broadly similar geodemographic segmentation and computerised 

campaigning techniques during the 2010 and 2015 UK General Elections. 
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Elsewhere, in The Guardian, Sabbagh (2018) has described how MOSAIC’s 

geodemographic classification scheme, segmenting UK population into 'metro high 

flyers', 'classic grandparents', 'disconnected youth' and other classes at postcode 

level, has been used by the Conservatives to help deliver targeted mailshots in 

more recent campaigns; a practice common to all main UK political parties. 

Why then, as a greater proportion of campaign spending moves online (Pew 

Research Center, 2018; The Electoral Commission, 2018a), does the sort of 

targeting long-employed offline by political parties in the UK and US appear to 

prompt such concern when delivered over the Internet? Is online political 

campaigning so different, so advanced from previous generations of computerised 

targeting and messaging, that it truly represents a new threat to democracy? The 

following pages, comprising the penultimate section of this thesis, discuss these 

issues; contributing to an ongoing and, as yet, inconclusive debate surrounding the 

use of geo-behavioural micro-targeting in political campaigning. 

Dommett & Temple (2018), citing earlier work by Gibson (2015), have noted that 

‘parties have become heavily dependent on digital technology’ through the use of 

‘email, party websites, social media, online videos and gamification.’ As the Labour 

Party's (2018, p14) Campaigners’ Handbook proves, the use of digital does not 

comprise geodemographic targeting alone. An entire digital infrastructure is offered 

to local Labour party activists, including online print services, downloadable voter 

registration cards, templates for survey research, branded posters and stickers, 

ward level voter analysis and much more; all available from a dedicated Campaign 

Creator website. Labour’s sophisticated campaign tools have been credited 

(Sabbagh, 2018) with boosting the party’s performance in the 2017 UK General 

Election called, unexpectedly, by Conservative Prime Minister Theresa May. In both 

this, and the earlier 2016 UK EU Membership (‘Brexit’) Referendum, Sabbagh 

reports, the Conservatives’ online efforts were outclassed by Labour’s, despite 

significant £1.2 million spending made on Facebook by the Tories earlier during the 
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2015 UK General Election (Moore, 2016). While Sir John Holmes, writing in the 

forward to the UK Electoral Commission's (2018a) report, Digital campaigning: 

Increasing transparency for voters, correctly identifies ‘an explosion in the use of 

digital tools in political campaigning’ his main concern, and that of the Commission 

he chairs, is combatting ‘serious allegations of misinformation, misuse of personal 

data, and overseas interference’ that have recently emerged; in the UK, principally, 

during the Brexit Referendum and, in the US, during the 2016 US Presidential 

Election. The ethical use of data and messaging, together with accurate advertising 

attribution, are clearly key requirements in fair online electioneering (Section 6.3.1, 

p238). However, recent expressions of ‘outrage’ and upset in broadsheet 

newspaper commentary and, to some extent, academia may also reflect, at least in 

part, attitudinal discontent or discomfort with the victors in these two elections (W. 

Davies, 2018). Neither Leave nor Trump were widly popular ‘establishment’ 

choices, leaving aside any concerns more directly associated with the ethical or 

unethical modes of campaigning that brought Brexit or ‘The Donald’ to victory. 

Dominic Cummings, architect of the successful Vote Leave campaign during the 

2016 UK European Union Membership Referendum, has reportedly stated 

(Sabbagh, 2018) that ‘It is hard to change people’s minds. We are evolved 

creatures. If we were all dopey dupes we wouldn’t be here, our ancestors would 

have all been killed.’ Nonetheless, the ‘Brexit’ campaign he designed, according to 

his description of its genesis given at advertiser Ogilvy & Mather’s Nudgestock 2017 

event (YouTube, 2018b), was cleverly calculated both to play on electors’ deep-

seated emotions – the use of the ‘Take back control’ phrase was apparently 

intended to trigger feelings of ‘loss aversion’ – and to exploit data distributions, 

e.g., a non-normal ‘third, a third and a fifth.’ Here, Cummings has argued, one third 

of voters ‘said the EU is rubbish and I want out and I'm not bothered about [and] 

not frightened of the consequences’, a second third ‘said the EU is a positive force 

and I definitely like it and I definitely want to be in and I'm definitely going to vote 

to stay in’ and a fifth of voters ‘said the EU is rubbish I would like to be out of it but 



Geotagging matters? 

313 

 

getting out is scary and I'll probably end up voting to stay in.’ The Vote Leave 

campaign, designed quickly by ‘a team of physicists who essentially looked at 

campaigning from complete first principles’ (Dominic Cummings, recorded on 

YouTube, 2018b), was intended to discourage the first third from voting, ensure the 

second third turned out to vote Leave and to ‘persuade enough of that fraction of 

the fifth not to be frightened and to [turn out and] vote with us.’ While the small 

team of physicists and young online advertising experts employed by Vote Leave 

certainly used demographics and geographical targeting the key breakthrough, 

according to Cummings, involved understanding how Facebook’s Likes and Interests 

data could be harnessed and played back to target particular groups of voters. The 

campaign was clever, but its unpopularity may owe more to inaccuracies in 

messaging (e.g., the £350m/week bus-side NHS funding ‘pledge’) and the outcome 

of the result rather than its detailed mode of operation. The fact Cummings’ Vote 

Leave campaign was sparked off by a seemingly undemocratic set of ‘phone calls 

from a combination of a few MPs and some campaigners and a few Tory party 

donor billionaires’ has also done little to cement its place in popular affection. 

Similar opprobrium has been directed at Cambridge Analytica, and Canadian 

associate AggregateIQ, in their support and work for elements of the Leave side 

during the 2016 Brexit Referendum and for the candidacy of Donald J.Trump during 

the 2016 US Presidential Election (Cadwalladr, 2018b; Cadwalladr & Graham-

Harrison, 2018; Frenkel et al., 2018). Part-owned by a right-wing American hedge-

fund billionaire (Robert Mercer), and with close ties to campaign manager Steve 

Bannon, Cambridge Analytica is supposed to have worked both for the Leave.eu 

and Trump election campaigns (Osborne, 2017). If Cummings’ work for Vote Leave 

mainly drew criticism for lack of attribution and misinformational messaging, 

Cambridge Analytica’s involvement in both campaigns proved controversial for two 

reasons. Firstly, because data used in campaigning appeared to have been 

misappropriated from Facebook and its users. Secondly, because the extent of the 

geo-psychologically targeted messaging laid bare the possibilities offered by Big 
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Data driven politicking (Section 1.1, p1 and Section 6.3.1, p238). The ‘harvesting’ of 

many millions of Facebook users’ personal details by Aleksandr Kogan’s personality 

quiz app, Thisisyourdigitallife, certainly constituted a major breach of trust and has 

led to the closure of Cambridge Analytica (BBC News, 2018a) and ongoing problems 

for Facebook, including government inquiries (U.S. House of Representatives, 

2018b) and substantial fines from data protection regulators (BBC News, 2018d; 

Embury-Dennis, 2018). While sophisticated the campaigns delivered by Cambridge 

Analytica do not, however, appear to have diverged hugely – except, perhaps, in 

extent – from other similar attempts to influence public opinion made online during 

2016 US and UK elections, several earlier and other overseas events including 

Obama’s 2012 US Presidential Election campaign and the 2014 Scottish 

Independence Referendum, examined here. Clever analysis and the use of 

Facebook, and its campaign management tools, are not unique to Cambridge 

Analytica or to Trump or to Vote Leave. Dommett & Temple (2018) have suggested 

that Facebook advertising is ‘the new normal’ in political campaigning and its use is 

certainly not confined only to the UK or US. 

W. Davies (2018), in the London Review of Books, has expressed doubts over 

Cambridge Analytica’s self-proclaimed successes in changing political opinion, 

stating that ‘Cambridge Analytica looks conveniently like a smoking gun, primarily 

because it has repeatedly bragged that it is one.’ Others have used targeted 

political communications previously, and the question as to whether geographical 

targeting of marginal seats – as opposed to targeting of specific types of voters – is 

is an intriguing one. In ‘first past the post’ electoral systems, such as that used in 

Britain and many countries with historical British ties, winning marginal seats 

matters enormously. In referenda, single transferable vote or additional member 

systems (the last two used in Scottish local and parliamentary elections, 

respectively), winning vote share is most important. Johnston & Pattie (2006) 

maintain that voting behaviours, and electoral results, arise from an interplay of 

socio-spatial factors operating at a range of scales; from the family home to the 
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workplace, local town or city through to the region and the state. In the Preface to 

Putting Voters in their Place, Johnston & Pattie (2006, pVII) state that their 

‘perspective – basically, highlighting the importance of space and, especially, place 

in the understanding of voting and the operation of electoral systems – has become 

part of the contemporary discourse of UK electoral studies, rather than a separately 

identifiable sub-sub-discipline.’ Place, therefore, widely mentioned in the Facebook 

and Twitter interaction message text and linked/shared URL content analysed here 

(Chapter 5, p186), may be expected to have special significance in electoral 

campaigning; even if modern online campaigns are now more likely to be 

predicated on a mixture of ‘demographic data such as age, postcode, religion, and 

gender, combined with indicators of users’ interests’ (Dommett & Temple, 2018, 

p190). Such modern campaigns may target ‘swing’ constituencies or, as Cummings’ 

work for Vote Leave shows, ‘swing’ voters, who may or may not live and vote in the 

most marginal of constituencies. As targeting methods enabled by Facebook and 

other OSNs have developed, it is clear that the social does indeed – as Johnston & 

Pattie have argued – interact with the spatial. Targeting highly-educated voters 

would effectively target London and the South East in the UK, while targeting 

unemployed voters would favour the de-industrialised areas of Northern England 

and parts of Wales. Conversely, targeting London, the South East, Northern England 

or Wales would, of course, also effectively target voter groups with different 

educational, un/employment and other characteristics as the distribution of socio-

economic traits (let alone Likes or Interests expressed on Facebook) are not 

uniformally distributed geographically throughout the country. While both social 

and spatial targeting are easily enabled on Facebook, Instagram etc. (Section 1.2, 

p11) it is currently much harder to determine whether political advertising based on 

socio-spatial targeting actually alters electoral outcomes or, using the available 

data, to determine how such material is promoted. Dimitrova & Matthes (2018, 

p333) note that while ‘social media have clearly affected our understanding of 

political communication and its effects on the public, it is difficult to see clear 

monolithic effects’ partly because ‘comprehensive aggregate studies offer evidence 
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that the effects of social media consumption and use are hardly uniform across 

different contexts and groups.’ Those in politics who spend significant sums on 

social media advertising might well disagree… 

It has been suggested that the Cambridge Analytica ‘circus risks distracting from the 

real institutional and political questions, in this case concerning companies such as 

Facebook and the model of capitalism that tolerates, facilitates and even celebrates 

their extensive and sophisticated forms of data harvesting and analysis’ (W. Davies, 

2018). Davies continues to argue that the major social media companies should no 

longer be allowed to totally exploit users’ personal data, suggesting that the thing 

they ‘fear most’ – anti-trust actions that would lead to their break-up, a suggestion 

also echoed by Reich (2018) – would be most effective in protecting privacy and 

preventing data-driven abuses. As Davies concludes, ‘Broken into smaller pieces, 

these companies would still be able to monitor us, but from disparate perspectives 

that couldn’t easily (or secretly) be joined up. Better a world full of snake-oil 

merchants like Cambridge Analytica, who eventually get caught out by their own 

bullshit, than a world of vast corporate monopolies such as Amazon and Facebook, 

gradually taking on the functions of government, while remaining eerily quiet about 

what they’re doing.’ Vote Leave campaign director, Dominic Cummings, has stated 

(YouTube, 2018b) that ‘most communications companies’, traditionally called upon 

by political parties to run campaigns, ‘are populated by bullshitting charlatans’ and 

the future of electoral campaigning will be driven by ‘experimental psychology and 

data scientists.’ He is probably correct. As this thesis has shown, however, tracking 

the downstream diffusion of geo-behaviourally micro-targeted communications is 

not straightforward. While Facebook (2018c) has recently announced ‘a new 

initiative to help provide independent, credible research about the role of social 

media in elections, as well as democracy more generally’ a new debate must now 

open; how much individual privacy must needfully be sacrificed to allow regulators 

sufficient oversight of digital campaigning to prevent democratic abuses? The data 

users gift to Facebook and other OSNs has been used by political marketers to 
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target them, possibly leading to manipulation of electoral results and changing 

policies (such as leaving the European Untion) that will have long-lasting and far-

reaching repercussions for societies. Are these users, or the platform operators 

themselves, also prepared to allow electoral officials, government agencies, 

researchers or others fuller access to these data for monitoring, even if in 

anonymised or aggregated form, to understand how this is being done? 

7.8 Summary 

There are no accepted ‘gold standards’ for OSN research. Scholars from many 

separate disciplines have adopted different methodological designs and 

technological approaches to filter huge volumes of social media data in search of 

meaning. Some of these data-driven approaches have been criticised for an over-

reliance on computational methods at the expense of theoretical reasoning. The 

approach followed in this research, a hybrid exploratory-case study methodology, 

has allowed hypothesis testing to determine whether coordinate-geotagging users 

behave similarly, or differently, to non-coordinate-geotagging users of Facebook 

and Twitter social media platforms during pre-electoral periods. 

While OSN coordinate-geotags have been widely studied for around ten years 

comparatively little is known about the online posting behaviour of the small 

percentage of OSN users who geotag their social media messages (Rzeszewski & 

Beluch, 2017). This thesis makes an original contribution to knowledge by showing 

that coordinate-geotagging users a) make fewer references to place in their 

messages, b) link to articles making fewer mentions of place in their text, and c) 

make fewer links to third-party material than other, non-coordinate-geotagging, 

users of OSN sites. In these respects, and in the two case study events under 

examination, geotagging users cannot be considered representative of all OSN 

users. Future research should test these conclusions against current data. As 

coordinate-geotagged OSN interactions are used in so many different application 

domains it is important both to reconfirm the validity and currency of these results 
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and to understand their ongoing relevance. In political contexts, however, it is 

clearly not enough simply to follow the spread of a word, toponym or URL link 

share in social media and to map geographical distributions by plotting the 

coordinates of those who have chosen to share that term or URL in geotagged 

messages; the results of such an exercise would be both unrepresentative and, 

therefore, in all likelihood, inaccurate. 
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Appendix 1 MAXMIND GEOIP CODING 

A1.1 Introduction 

The map in Figure 1-1 (p23) results from the processing of 426,747 rows of web 

server log data retrieved from a Digital Audio Tape (DAT) backup of the UK 1997 

General Election website created on 26/03/1997. These data, the only recoverable 

fragment of a much larger original set of web server logs, were loaded into 

Microsoft Access. 6,593 distinct IP addresses were recorded, and these were passed 

through the MaxMind GeoIP RESTful API using the ColdFusion code below. 

A1.2 ColdFusion code 

A1.2.1 application.cfm 

<!--- licence key for MaxMind CityIP webservice ---> 
<cfparam name="LicenceKey" default="80BYiNRaYo1y"> 
 
<!--- myDSN ---> 
<cfparam name="myDSN" 
default="Election97_log_analysis"> 

 

A1.2.2 process_ips.cfm 

<!--- get some records ---> 
<cfquery name="get_some" datasource="#myDSN#"> 
 select top 50 * from distinctips where processed=0 
</cfquery> 
 
<!--- some counters ---> 
<cfset found_counter = 0> 
<cfset unfound_counter =0> 
 
<!--- loop over the records to geocode them --->     
<cfif get_some.recordcount is not 0> 
 <cfloop query="get_some"> 
  <cfset this_ip = get_some.ipaddress> 
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        <cfoutput><br />Working on #this_ip#...<br 
/></cfoutput> 
        <cfinclude 
template="_process_one_ip_address.cfm"> 
 </cfloop> 
    <br /> 
    <cfoutput>Done #get_some.recordcount#! Found 
#found_counter#, did not find 
#unfound_counter#!</cfoutput> 
</cfif> 

 

A1.2.3 _process_one_ip_address.cfm 

<!--- contributed by reinhard jung ---> 
<cfhttp method="get" 
url="http://geoip1.maxmind.com/f?l=#LicenceKey#&i=#this
_ip#"></cfhttp> 
<cfset resultMaxMind = cfhttp.FileContent> 
 
<!---<cfoutput>#resultMaxMind#</cfoutput>---> 
 
<!--- if string does not contain IP_NOT_FOUND ---> 
<cfif findnocase('IP_NOT_FOUND', resultMaxMind) is 0> 
 
 <!--- create Array ---> 
    <cfset qMaxMindByID = structNew()/> 
    <cfset qMaxMindByName = structNew()/> 
    <cfset thisField = 
"country,region,city,postal,latitude,longitude,metroCod
e,area,ISP,organization"/> 
    <cfset thisPos = 1/> 
    <cfset thisValue = ""/> 
    <cfset stringField = "false"/> 
    <cfloop from="1" to="#Len(resultMaxMind)#" 
index="mmField"> 
            <cfif mid(resultMaxMind,mmField,1) IS ',' 
AND NOT stringField> 
                    <cfset qMaxMindByID[thisPos] = 
thisValue> 
                    <cfset 
qMaxMindByName['#ListgetAt(thisField,thisPos)#'] = 
thisValue> 
                    <cfset thisPos = thisPos +1/> 
                    <cfset thisValue = ""/> 
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            <cfelse> 
                    <cfif mid(resultMaxMind,mmField,1) 
IS '"'> 
                            <cfset stringField = 
iif(stringField,"false","true")/> 
                    <cfelse> 
                            <cfset thisValue = 
thisValue &mid(resultMaxMind,mmField,1)/> 
                    </cfif> 
            </cfif> 
            <cfif Len(resultMaxMind) EQ mmField> 
                    <cfset qMaxMindByID[thisPos] = 
thisValue/> 
                    <cfset 
qMaxMindByName['#ListgetAt(thisField,thisPos)#'] = 
thisValue> 
            </cfif> 
    </cfloop> 
     
    <!--- access Array  
    <br /><cfoutput>#qMaxMindByID[3]#</cfoutput> 
    <br 
/><cfoutput>#qMaxMindByName['city']#</cfoutput>---> 
     
    <!--- dump Array for overview  
    <cfdump var="#qMaxMindByID#" 
label="qMaxMindByID"><br /> 
    <cfdump var="#qMaxMindByName#" 
label="qMaxMindByName"><br />---> 
     
    <!--- update the database ---> 
 <cfquery name="update_row_with_data" 
datasource="#myDSN#"> 
     update distinctips  
         set  
             country='#qMaxMindByName['country']#', 
                region='#qMaxMindByName['region']#', 
                city='#qMaxMindByName['city']#', 
                postal='#qMaxMindByName['postal']#', 
                latitude=#qMaxMindByName['latitude']#, 
                
longitude=#qMaxMindByName['longitude']#, 
                
metrocode='#qMaxMindByName['metrocode']#', 
                area='#qMaxMindByName['area']#', 
                isp='#qMaxMindByName['isp']#', 



Geotagging matters? 

410 

 

                
organisation='#qMaxMindByName['organization']#', 
             processed=1,  
                processed_datetime=getdate()  
            where  
             ipaddress='#this_ip#' 
    </cfquery> 
    <cfset found_counter = found_counter + 1> 
 ...found! 
 
<cfelse> 
 
 <!--- mark the row as done ---> 
 <cfquery name="update_row_no_data" 
datasource="#myDSN#"> 
     update distinctips set processed=1, 
processed_datetime=getdate() where 
ipaddress='#this_ip#' 
    </cfquery> 
    <cfset unfound_counter = unfound_counter + 1> 
 ...not found! 
 
</cfif> 
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Appendix 2 WORD CLOUD GENERATION 

A2.1 Introduction 

Word Clouds offer an attractive mechanism for visualising the relative importance, 

or weight, of terms appearing in a corpus of written material (McNaught & Lam, 

2010). Over 1,250 academic journal, book, chapter and/or online references 

(summarised in Chapter 2, p51) have been collected and stored in Mendeley 

Desktop reference management software as part of this research. Computational 

analysis of document titles provides a useful overview of key terms in the corpus. 

A2.2 BibTeX file-based processing 

Mendeley provides the facility (under File -> Export…) to export selected 

references. By selecting all references (Edit -> Select All) and hitting File -> Export… 

all references will be saved to a file (My Collection.bib) in BibTeX format, a 

widely used standard for the interchange of academic references (Feder, 2006). As 

BibTeX is a format consisting of marked-up plain text (Figure A2-1) it is possible to 

search the backup file for all occurrences of the phrase ’title = {{‘ to build a 

list of document titles. 

@article{Wilson2012, 
author = {Wilson, Matthew W.}, 
doi = {10.1016/j.geoforum.2012.03.014}, 
file = {:C$\backslash$:/Users/Adrian 
Tear/Documents/Mendeley Desktop/Wilson - 2012 - 
Location-based services, conspicuous mobility, and the 
location-aware future.pdf:pdf}, 
issn = {00167185}, 
journal = {Geoforum}, 
keywords = {location-based services}, 
month = {nov}, 
number = {6}, 
pages = {1266--1275}, 
publisher = {Elsevier Ltd}, 
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title = {{Location-based services, conspicuous 
mobility, and the location-aware future}}, 
url = 
{http://linkinghub.elsevier.com/retrieve/pii/S001671851
2000747}, 
volume = {43}, 
year = {2012} 
} 

Figure A2-1 – Snippet of a BibTeX file 

Using a Linux VM the following steps were executed: 

• In Terminal run grep ‘title = {{‘ My\ Collection.bib > 

01titles.txt to split title line text out into a separate file 

• Edit 01titles.txt to find/replace and remove the following text: 

o title = {{ 

o }}, 

o {\\textregistered} 

o {\\textperiodcentered} 

o {\\ldots} 

o {\ 

o } 

• In Terminal run awk ‘{print tolower($0)}’ 01titles.txt > 

02titleslcase.txt to convert all text to lowercase 

Text in the resulting file may then be copied/pasted or uploaded to any one of the 

many Word Cloud generators on the Internet (e.g., Davies, 2018). The approach 

would work for any BibTeX-formatted file. 

A2.3 SQLite database-based processing 

As Mendeley Desktop is built around a SQLite database an easier alternative to 

BibTeX file-based processing involves opening, querying and saving results from the 

Mendeley SQLite database using the followings steps: 
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• Backup references using the Help -> Create Backup… option in Mendeley  

• Extract the [username]@www.mendeley.com.sqlite file in the 

resulting ZIP archive to a working directory 

• Open the .SQLITE file using DB Browser for SQLite or similar and execute the 

query select lower(title) from documents 

The screen in DB Browser for SQLite should be similar to that shown in Figure A2-2. 

 

Figure A2-2 – Querying the Mendeley SQLite database to return lowercase article titles 

Output from the query may be saved/uploaded or copied/pasted into one of the 

many Word Cloud generators found online (e.g., Davies, 2018) or read into R for 

further analysis. 
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Appendix 3 ACADEMIC LITERATURE TEXT-MINING 

A3.1 Introduction 

Programming techniques from several sources (academic, online and software 

training) have been combined to produce text-mining outputs detailed in Section 

2.2.2 (p57). The methods are described below. 

A3.2 Preparation 

Mendeley stores saved documents (typically Adobe PDF files) in the Windows 

directory C:\Users\[username]\Documents\Mendeley Desktop. Files 

can be read from this location directly by a virtual machine.  

 

Figure A3-1 – Mapping the working directory in VirtualBox to a Shared Folder on the 
Ubuntu virtual machine 
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The directory should be mapped as a Shared Folder in Oracle VM VirtualBox 

Manager (Figure A3-1) to a Linux virtual machine running R, in this case an Ubuntu 

16.04 LTS box configured with 4GB of Random Access Memory (RAM) and 2 

processors. All file operations on the PDF files may then be completed in R on the 

VM, through the RStudio interface, using the scripts and required R libraries below. 

A3.3 Corpus creation 

The R script 001 - read LIVE corpus from PDF files.R resolves a 

list of PDF files to read from /media/sf_Mendeley_Desktop  (the live 

Mendeley PDF document repository) and uses the readPDF construct to create a 

corpus from these files. 

#######################################################
######################### 
# 
# VM-UBUNTU-R 
# 
#######################################################
######################### 
 
 
# load tm 
library(tm)  
 
# Set the working directory 
setwd("/media/sf_Mendeley_Desktop") 
 
# list of filenames 
filenames = list.files(getwd(),pattern="\\pdf")  
cat(filenames) 
 
# adapted from 
http://data.library.virginia.edu/reading-pdf-files-
into-r-for-text-mining/ 
Rpdf <- readPDF(control = list(text = "-layout")) 
 
# make the corpus 
lit_corpus <- Corpus(URISource(filenames), 
readerControl = list(reader = Rpdf)) 
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The resulting data set, lit_corpus, is a Large VCorpus (Volatile Corpus) with n 

documents. 

A3.4 Corpus analysis 

The R script 002 - analyse LIVE corpus from PDF files.R is used 

to process and analyse text in the PDF documents to produce counts and 

visualisations of word occurrences in the corpus. It depends upon several packages 

(tm, ggplot2, wordcloud2) which must be installed (with dependencies) in RStudio. 

#######################################################
######################### 
# 
# VM-UBUNTU-R 
# 
#######################################################
######################### 
 
# parts from https://github.com/juliasilge/tidytext 
 
# install these packages using R Studio 
library(tm) 
library(ggplot2) 
library(wordcloud2) 
 
# remove punctuation, whitespace etc. 
# use content_transformer(tolower) as 
tm_map(lit_corpus, tolower) destroys the corpus! 
doc.corpus <- tm_map(lit_corpus, 
content_transformer(tolower)) 
 
# the rest of it 
doc.corpus <- tm_map(doc.corpus, removePunctuation) 
doc.corpus <- tm_map(doc.corpus, removeNumbers) # THIS 
MAY BE UNHELPFUL WHEN TRYING TO FIND PAGE NUMBERS!! 
 
# stopwords 
# get the list of unwanted abundant characters by 
running through without this removal first and looking 
at findFreqTerms results 
doc.corpus <- tm_map(doc.corpus, removeWords, 
c(stopwords("english"),"figure","table","management","p
roceedings","research","acm","pages","items","topic","j
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ournal","portsmouth","chapter","fig","downloaded","hain
an","tourism","biginsights","â—\u008f","âˆ—","âˆ—âˆ—
","âˆ—âˆ—âˆ—
","âˆˆ","âˆ’","â€˜","â€˜â€˜","â€‚","â€“","â€”","â€\u009
d","â€ƒ","â€œa","â€œi","â€œsocial","â€œthe","â€™","â€™s
","â\u0081„â\u0081„","aaai","ããž")) 
 
# stemming (if desired) 
# stemming may introduce what appear to be mis-
spellings (analysis -> analysi etc.) 
# from https://eight2late.wordpress.com/2015/05/27/a-
gentle-introduction-to-text-mining-using-r/ 
####doc.corpus <- tm_map(doc.corpus, stemDocument) 
 
# whitespace 
doc.corpus <- tm_map(doc.corpus, stripWhitespace) 
 
# inspect first element 
inspect(doc.corpus[1]) 
 
# TF-IDF DTM 
# syntax from 
http://stackoverflow.com/questions/14820590/trying-to-
get-tf-idf-weighting-working-in-r 
DTM_tf_idf <- DocumentTermMatrix(doc.corpus, 
                                 control = 
list(weighting = function(x) weightTfIdf(x, normalize = 
FALSE), 
                                                
stopwords = TRUE)) 
 
# inspect the DTM 
DTM_tf_idf 
 
# frequency ideas from 
https://www.linkedin.com/pulse/text-analytics-forecast-
cloudy-jeffrey-strickland-ph-d-cmsp?trk=hp-feed-
article-title-publish 
freq <- colSums(as.matrix(DTM_tf_idf))  
freq <- sort(colSums(as.matrix(DTM_tf_idf)), 
decreasing=TRUE)    
 
# as a data frame 
wf <- data.frame(word=names(freq), freq=freq)    
head(wf) 
 
# as a histogram 



Geotagging matters? 

418 

 

p <- ggplot(subset(wf, freq>8000), aes(word, freq))     
p <- p + geom_bar(stat="identity")    
p <- p + theme(axis.text.x=element_text(angle=45, 
hjust=1))    
p 
 
# as a wordcloud (adjust freq as required) 
# pretty it up a bit, from https://cran.r-
project.org/web/packages/wordcloud2/vignettes/wordcloud
.html (random-light/random-dark etc.) 
# black background, light text 
wordcloud2(subset(wf, freq>=4000), color = "random-
light", backgroundColor = "black", size=0.4) 
 
# white background, dark text 
wordcloud2(subset(wf, freq>=4000), color = "random-
dark", backgroundColor = "white", size=0.4) 

 

Selected output from this script is presented in the main body of the thesis in 

Section 2.2.2 (p57). 

A3.5 Word frequency export 

The R script 003 - export WF.R exports the data frame WF, containing word 

frequencies, to a CSV file. This file may be opened in Excel for thematic hand-coding 

of key words, histogram generation and so forth. 

#######################################################
######################### 
# 
# VM-UBUNTU-R 
# 
#######################################################
######################### 
 
write.csv(wf, file="WF.csv") 
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Appendix 4 ETHICAL REVIEW CORRESPONDENCE 

A4.1 Introduction 

Ethical review was sought on 18/05/2015, with a bundle of material (available upon 

request) sent to Dr Malcolm Bray, Department of Geography Ethics Co-ordinator at 

the University of Portsmouth,  

A4.2 Initial response 

Dr Bray responded to the Ethical review request with a favourable opinion (subject 

to conditions) on 29/05/2015 (Figure A4-1). 

Department of Geography  
University of Portsmouth  
Buckingham Building  
Lion Terrace  
PORTSMOUTH PO1 3HE  

Adrian Tear  
Department of Geography  
Date:  29th May 2015  
 
FAVOURABLE OPINION WITH CONDITIONS  
 
Protocol Title: Social media, sentiment and location: the role of geography in politically 
charged online debate.  
Date Reviewed: 29th May 2015  
 
Dear Adrian,  
 
Thank you for submitting your application for ethical review.  The proposal was 
reviewed by Dr Malcolm Bray as a Departmental Review. M. Bray made the 
decision not to invoke full review by the Science Faculty Ethics Committee 
because:  
 

A. All of your data are obtained from public domain secondary sources and 
you have undertaken to abide by regulations of the data provider in the 
use of that data;  
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B. There are no interactions between the researcher and the data subjects 
(persons sending messages publically on online social networks);  

C. Data analysis is aggregated as the samples involve several million 
messages, so that individual message contents would not be reported;  

D. The content filtering design does not aim to collect potentially sensitive 
information.  

 
You have provided a full account of your proposals and a useful review of the 
emerging ethical considerations associated with research based on social media 
data sources. Nonetheless, there are some uncertainties as to whether all 
subjects engaged with social media fully understand the “public” nature of their 
engagement. Furthermore, there is a strong potential for disclosures within the 
messages of illegal activities or other items that could be harmful to the subjects 
and/or others. Also, it is theoretically possible to identify the originators of 
messages even though that is not the purpose of your research. Because of these 
uncertainties I list the following conditions to which you should comply:  
 

1) It is important that the data are stored securely. Your application 
document provides appropriate details and I understand also that by 
using the Oracle database storage is especially secure;  

2) Do not link message content to identifiable individuals (i.e. originators of 
messages) when writing up your Thesis;  

3) Wherever possible do not filter message contents using terms that are 
likely to identify potentially sensitive information. If your research 
necessarily reports on potentially sensitive message contents it is 
important that it is impossible to trace specific content back to specific 
individuals i.e. wherever possible discuss aggregated results;  

4) If you inadvertently encounter potentially sensitive information you 
should keep it confidential and secure unless you feel that there is an 
over-riding reason to report it. In cases where you are uncertain please 
consult your supervisor. I accept that your data is now “historic” which 
can reduce the potential sensitivity of some types of information;  

5) If your data is ever to be used for a different research project then a new 
ethics review would be required.  
 

I hope that you are able to incorporate these conditions into your research 
design. Please can you confirm back to me that the conditions are OK, similarly 
do let me know if any are problematic.   
 
I wish you good luck with the study.  

 
Dr Malcolm Bray  
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Geography Dept. Ethics Co-ordinator  
 

Figure A4-1 – Dr Malcom Bray’s Ethical review response: ‘Favourable opinion with 
conditions’ 

A4.3 Supplementary question 

Following the Annual Review meeting at the end of 2015 a supplementary question 

was sent by email to Dr Bray (Figure A4-2). 

Hi Malcolm 
 
At my annual review the other month Dr.Potts raised the question as to whether 
I should be able to report the content of individual Tweets etc. 
 
Earlier when I submitted my bundle to you I had indicated that I was most 
interested in the aggregate data and counts etc. However, it may be useful to 
output content from 'established figures' in my corpus (e.g. Obama or Salmond) 
or indeed that of the 'most retweeted' users etc. (who may not be candidates but 
might be newspaper reporters or simply private individuals). All of the data are, 
effectively, public domain but - as I mentioned - some users might well be 
unaware just how public domain it all is! 
 
I understand from Kim, with her Twitter/Smoking in Wales project, that David 
Carpenter thinks reporting the content of 'established figures' is basically OK but I 
thought I'd better run this question past you again. 
 
The PhD will not be an exercise in repeating Tweets - I am much more interested 
in the aggregate behaviour of geo-tagging/non-geo-tagging users - but it 
probably would be useful to be able to reference particular messages, which is 
what I think Jonathan was thinking. 
 
Following your earlier review/guidance do you have any suggestions? 
 
Regards, Adrian Tear 

Figure A4-2 – Email of 22/02/2016 (Adrian Tear - Ethical Review - Further Question) 

A4.4 Supplementary response 

Dr Bray replied to the supplementary question posed above on 25/02/2016 (Figure 

A4-3). 
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Adrian, 
 
In my opinion it is reasonable to expect that "established figures” - who know 
that they are "in the public limelight" and who might expect media attention - 
should be aware that their publicly available Tweets really are public! Thus, they 
should be considering their comments carefully as they make them and they 
should accept full responsibility for comments made. That said I would still 
recommend not attributing comments that are obviously highly sensitive and/or 
which are clearly detrimental to named or identifiable third parties (Provision 1). 
 
A possible uncertainty is how to judge whether a social media participant is an 
"established figure?" I'm guessing that you would only wish to quote from readily 
identifiable "established figures" rather than obscure or marginal ones? To be 
sure I feel that you need outline roughly how many "established figures" do you 
intend to quote in this manner? and (b) what is your process for identifying 
"established figures" giving examples (Provision 2). I would have a problem for 
example in establishing the status of a prolific tweeter who otherwise is not in 
the public eye, maybe that's not an issue for you? 
 
I feel that your desire to name/identify a few select Tweeters as you request in 
your message is a minor, very justifiable and safe (with my provisions) variation 
to your original ethics application. 
 
Please can you confirm that I have interpreted your intentions correctly and that 
you are happy to abide by Provisions 1 and 2. Please reply to the specific 
elements of Provision 2. 
 
Please retain our exchanges of messages as evidence of continuing ethical 
consideration within your research. 

Figure A4-3 – Email of 25/02/2016 in response to the supplementary question 

The final exchange in this supplementary matter is reproduced below (Figure A4-4). 

Thank you Malcolm. That sounds sensibly balanced to me. In the next week or 
three I will have more of an idea about whose individual messages I might like to 
report on and then, by looking at metrics such as numbers of followers or friends 
etc., it should be self evident in the data who is a 'figure' of any repute. Regards 
Adrian 

Figure A4-4 – Email of 25/02/2016 confirming acceptance of the opinion regarding the 
supplementary question 
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A4.5 Form UPR16 
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Appendix 5 DATASIFT TWITTER LICENCE 

A5.1 Introduction 

The following licence terms were accepted 13/06/2012 upon registration at 

DataSift.com. 

A5.2 Licence 

Twitter 

Your use of Datasift is subject to a licence from us, Mediasift Limited, and your use 

shall be limited to the scope agreed between us, based on the description provided 

by you (below) of the service or product you intend to provide, including any 

changes required by us. We are obliged by our own contractual commitments to 

ensure that Datasift is only used for Approved Purposes as described below. 

Approved Purposes 

Products and services created and marketed by you may only be used to display 

Content (a "Display Product") where they are provided to the End User through a 

Commercial Service. For example, it is not permissible for you to display Content on 

a publicly available website, including your own website. 

You may create and market "Data Products" for analysis or statistical purposes, 

such as search engine ranking algorithms, sentiment analysis engines, ad targeting 

algorithms and malware analysis products provided such products do not involve 

the sale or resale of Content or the public display or curation of Content via a 

service whose primary purpose is display of Content for end user consumption. 

You may not create any services or products, which facilitate the delivery of 

sponsored tweets or other advertising. 
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You must respect the privacy and sharing settings of Twitter Content. Do not share, 

or encourage or facilitate the sharing of protected Twitter Content. Promptly 

change your treatment of Twitter Content (for example, deletions, modifications, 

and sharing options) as changes are reported through the API. 

We will pass on to you any Delete Messages that we receive from Twitter. When 

you receive the Delete Message, you must remove any Deleted Tweet that is the 

subject of the Delete Message and discard the Delete Message itself. You may not 

store or create any service displaying or publicizing any Deleted Tweets. Please see 

instructions for how to handle delete messages 

http://dev.datasift.com/docs/twitter-deletes. 

We also pass on to you any User Status Messages we receive from Twitter. When 

you receive a User Status Message, you must act according to the guidelines set out 

in our Twitter User Status Messages documentation to respect the privacy and 

sharing settings of Twitter's users. 

In addition to the restrictions contained in this license from us, you are also 

required to follow the Twitter Rules. 

In these terms: 

"Commercial Service" means a paid for service provided on commercial terms by 

you to third parties, via paid subscription or behind a paywall. Services charged at a 

nominal or token rate are expressly excluded from this definition and Mediasift 

shall in its absolute discretion determine if a service is provided on commercial 

terms. 

"Content" means all data provided to you via the Datasift API including the body of 

tweets, profile information and other metadata contained in the Datasift API. 

"Delete Message" means a notification from Twitter of a Deleted Tweet. 

http://dev.datasift.com/docs/twitter-deletes
http://dev.datasift.com/docs/resources/twitter-user-status-messages
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"Deleted Tweet" means any Tweet deleted by a user. 

"End User" means an individual user of any service or product created by you. 

"Twitter Rules" means the Developer Rules of the Road, Display Guidelines and the 

Connect with Twitter Guidelines available on Twitter’s Developer Site located at 

http://dev.twitter.com. 

"User Status Message" means a notification from Twitter of a change to a user's 

account status. 

"You" means you, the customer subscribing to the Datasift service subject to these 

terms and conditions, including your employees, directors, agents or any other 

party accessing the Datasift service on your behalf. 

[If you are unsure whether your use of Datasift is for an Approved Purpose, please 

contact us.] 

For our full licence terms, see our Terms and Conditions. 

http://dev.twitter.com/
http://datasift.com/contact-us
http://datasift.com/terms
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Appendix 6 2012 FRENCH PRESIDENTIAL ELECTION 

A6.1 Technical proof of concept 

On 6 May 2012, a technical proof of concept exercise was undertaken to record 

OSN interactions made during the final stages of the 2012 French Presidential 

Election using the CSDL statement below: 

interaction.content CONTAINS_ANY "french election, 
presidential election, sarkozy, hollande" 

The CSDL was designed to record OSN interactions with message text containing 

any of the case-insensitive phrases (e.g., ‘french election’) shown within double 

quotes above. The recording started on Sunday, 6 May 2012 at 16:17:47 and was 

stopped at 17:31:03 on the same day, some 1 hour, 13 minutes and 16 seconds 

later. 

A6.2 Outputs and analyses 

Figure A6-1 shows the timeline of OSN interactions sampled.  

 

Figure A6-1 – Minute by minute Count and Cumulative total of OSN interactions recorded 
4pm and 5pm on 6 May 2012 during the French Presidential Election second-round runoff 



Geotagging matters? 

428 

 

The peak flow of 1,166 interactions/minute was observed at 17:12 on 6 May 2012. 

In total, 52,914 OSN interactions were recorded in under an hour and a quarter. 

The resultant data set, downloadable in both CSV and JSON file formats, contained 

163 fields (‘columns’, ‘variables’ or ‘key/value pairs’) for each observation. Most 

records came from Twitter (n=52,853), a few others came from Facebook (n=21) 

and Digg (n=40). 

Analysis of the 76MB CSV file followed, using standard desktop applications 

including Microsoft’s Excel spreadsheet and Access RDBMS software (Microsoft, 

2018). One of the first results showed that OSN data are somewhat atypical of 

many other types of data, e.g., Census counts, often used in social science research. 

Most of the fields within the data set exhibited a high degree of row level sparsity. 

Only 6 fields were fully row-populated: 

• interaction.author.avatar 
• interaction.author.name 
• interaction.content 
• interaction.created_at 
• interaction.id 
• interaction.type 

A further 8 fields were highly populated but most fields in the data set (72 of 163, 

Figure A6-2, p429) contained high percentages of NULL (no data) records in rows. 

Of the 6 fully-populated fields, interaction.content contained the message 

text and interaction.created_at contained a long date/time stamp with 

time zone offset (e.g., ‘Sun, 06 May 2012 16:17:47 +0000’). This field has been used 

to calculate the number of interactions recorded/minute shown in Figure A6-1. 



Geotagging matters? 

429 

 

 

Figure A6-2 – % Null rows within columns in the French Presidential Election technical 
proof of concept data set; few columns/fields have fully populated rows 

While many fields in the data set were not fully row-populated, others, e.g., 

demographic.gender, present in 60.89% of records, contained somewhat 

perplexing values (Figure A6-3).  

 

Figure A6-3 – Gender in the French Presidential Election technical proof of concept data set 



Geotagging matters? 

430 

 

Gender, it transpired, had been assigned to records based on DataSift’s internal 

modelling of language usage and was, hence, an approximation featuring more 

genders than is normal (‘mostly male’, ‘unisex’ etc.), rather than a reality based on 

actual and, for privacy reasons, unavailable user registration data.  

Just 736 records (1.39% total) with non-null interaction.geo.latitude 

could easily be mapped (Figure A6-4), showing a European and predictably French 

bias in the geographical distribution of OSN interactions. This low percentage of 

coordinate-geotagged interactions proved to be in line with similarly low 

percentages subsequently reported by Leetaru et al. (2013). 

 

Figure A6-4 – European distribution of explicitly geotagged interactions (n=736, 1.39% of 
the total) in the French Presidential Election technical proof of concept data set 

Further DataSift ‘augmentations’, e.g., the salience.content.sentiment 

field, a pre-computed sentiment score, allowed other types of analyses, e.g., 

graphing the positive/negative opinions surrounding a given candidate (Figure A6-5, 

p431). The score is one of several augmentations to social media data provided by 

Datasift (2018) as part of their service offering and has been calculated using ‘black 

box’ NLP software provided by Lexalytics (2018). 

It appeared that messages mentioning Hollande exhibited somewhat more 

favourable sentiment at the upper (positive) ends of the salience scale, although 
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many messages sent by highly-followed Twitter users (>10,000 followers) were only 

just positive or negative in tone (+4 to -4 in Figure A6-5). 

 

Figure A6-5 – Salience score and count of interactions mentioning ‘Hollande’ sent by 
Twitter users (with over 10,000 followers) in the French Presidential Election technical 

proof of concept data set 

Outputs from the technical proof of concept demonstrated that OSN interactions 

could be filtered, recorded, saved and downloaded using the DataSift platform at 

speed, in large volume and with controllable costs. Analyses of downloaded data 

further suggested that larger numbers of OSN interactions could be used to answer 

the research questions (Section 1.7, p34) set out in this thesis. The CSDL definitions 

used to collect larger data volumes, for the 2012 US Presidential Election and the 

2014 Scottish Independence Referendum, are given in Appendix 7 (p432). 
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Appendix 7 DATASIFT STREAM DEFINITIONS 

A7.1 Introduction 

DataSift allows for the extraction of filtered Online Social Network (OSN) data using 

a proprietary Curated Stream Definition Language, CSDL (DataSift, 2013a). The CSDL 

used to record each Stream is reproduced below. 

The United States Stream definitions are designed to: 

• Tag Tweets or Posts ‘Democratic Party’ or ‘Republican Party’; 

• Tag Tweets or Posts ‘Barack Obama’ or ‘Mitt Romney’; 

• Tag Tweets or Posts ‘Positive’, ‘Neutral’ or ‘Negative’; 

• Filtered on a set of keywords listed in interaction.content, and 

• On language, and; 

• On the existence of salience (sentiment), and; 

• On the existence of geography (if explicitly required); 

• Sampled from the universe in some proportion. 

All three United States Stream definitions are identical save for differences in 

language, sample size and/or the explicit requirement for geographically referenced 

data. An ‘internally generated floating-point random number between 0 and 100’ 

(DataSift, 2018a) controls sample size. 

The Scottish Stream definition differs slightly in that only one Stream was used (for 

a much longer time period), and no sampling or geographic filtering was used. 

A7.2 2012 United States Presidential Election 

The three Stream definitions are given below each with a summary table detailing 

start and end dates, language, geographical scope and so forth. 
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A7.2.1 US2012_GEO  

Table A7-1 – Summary of the US2012_GEO Stream 

Start 04/09/2012 End 06/11/2012 Duration 64 days 
Language EN Scope Worldwide Sample 1:5 
Geo filter Yes Records 146,424 CSV/JSON 0.17/0.26GB 
 

tag "Democratic Party" { interaction.content any 

"democrat,democrats,democratic,barack obama,obama,joe biden,biden" } 
tag "Republican Party" { interaction.content any 

"republican,republicans,mitt romney,romney,paul ryan,ryan" } 
tag "Positive" { salience.content.sentiment > 0 } 
tag "Neutral" { salience.content.sentiment == 0 } 
tag "Negative" { salience.content.sentiment < 0 } 
tag "Barack Obama" { interaction.content any "barack 

obama,barack,obama" } 
tag "Mitt Romney" { interaction.content contains "mitt 

romney,mitt,romney" } 

 
return { 
interaction.content any "2012 election,presidential election,US 

president,president of the united states,republican,republicans,mitt 

romney,mitt,romney,democrat,democrats,democratic,barack 

obama,barack,obama" 
AND language.tag == "en" 
AND salience.content.sentiment exists 
AND interaction.geo exists 
AND interaction.sample < 20 
} 

A7.2.2 US2012_NON_GEO 

Table A7-2 – Summary of the US2012_NON_GEO Stream 

Start 06/09/2012 End 06/11/2012 Duration 62 days 
Language EN Scope Worldwide Sample 1:50 
Geo filter No Records 1,560,967 CSV/JSON 2.38/2.87GB 

 



Geotagging matters? 

434 

 

tag "Democratic Party" { interaction.content any 

"democrat,democrats,democratic,barack obama,obama,joe biden,biden" } 
tag "Republican Party" { interaction.content any 

"republican,republicans,mitt romney,romney,paul ryan,ryan" } 
tag "Positive" { salience.content.sentiment > 0 } 
tag "Neutral" { salience.content.sentiment == 0 } 
tag "Negative" { salience.content.sentiment < 0 } 
tag "Barack Obama" { interaction.content any "barack 

obama,barack,obama" } 
tag "Mitt Romney" { interaction.content contains "mitt 

romney,mitt,romney" } 

 

return { 
interaction.content any "2012 election,presidential election,US 

president,president of the united states,republican,republicans,mitt 

romney,mitt,romney,democrat,democrats,democratic,barack 

obama,barack,obama" 
AND language.tag == "en" 
AND salience.content.sentiment exists 
AND interaction.sample < 2 
} 

A7.2.3 US2012_NON_GEO_HISPANIC 

Table A7-3 – Summary of the US2012_NON_GEO_HISPANIC Stream 

Start 05/10/2012 End 06/11/2012 Duration 33 days 
Language ES Scope Worldwide Sample 1:50 
Geo filter No Records 11,276 CSV/JSON 0.01/0.02GB 

 

tag "Democratic Party" { interaction.content any 

"democrat,democrats,democratic,barack obama,obama,joe biden,biden" } 

tag "Republican Party" { interaction.content any 

"republican,republicans,mitt romney,romney,paul ryan,ryan" } 

tag "Positive" { salience.content.sentiment > 0 } 

tag "Neutral" { salience.content.sentiment == 0 } 

tag "Negative" { salience.content.sentiment < 0 } 

tag "Barack Obama" { interaction.content any "barack 
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obama,barack,obama" } 

tag "Mitt Romney" { interaction.content contains "mitt 

romney,mitt,romney" } 

 

return { 

interaction.content any "2012 election,presidential election,US 

president,president of the united states,republican,republicans,mitt 

romney,mitt,romney,democrat,democrats,democratic,barack 

obama,barack,obama" 

AND language.tag == "es" 

AND salience.content.sentiment exists 

AND interaction.sample < 2 

} 

A7.3 2014 Scottish Independence Referendum 

The Stream definition is given below together with a summary table. 

A7.3.1 SCOT2014 

Table A7-4 – Summary of the SCOT2014 Stream 

Start 18/09/2013 End 30/09/2014 Duration 378 days 
Language EN Scope Worldwide Sample 1:1 
Geo filter No Records 6,477,713 CSV/JSON 21.1/19.9GB 

 

interaction.content contains_any "Scottish independence,Scottish 

referendum,independence referendum,independance 

referundum,independence vote,independance vote,Scotland 

independence,Scotland referendum,Scottish independent,Scotland 

independent,Scottish vote,Scotland vote,Scottish union,Scotland 

union,Scottish secession,Scotland secession,Scottish 

separation,Scotland separation,Scottish nationalist,Scotland 

nationalist,SNP,Salmond,Alec Salmond,Alistair Darling,Better 

Together,Leave the UK,Yes Scotland" 
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Appendix 8 COMPUTING ENVIRONMENT 

A8.1 Background 

Recent advances in desktop-based computers and computer virtualisation have 

provided significant platform flexibility in the conduct of this research. Over thirty 

years ago Barr (1985) argued that ‘in a rapidly changing environment, with 

hardware regularly offering more power for less money, portable machine-

independent software needs to be developed for mapping applications. This needs 

to take full advantage of the powerful interactive capabilities of microcomputers to 

provide both skilled and naive users with opportunities for interacting with maps, 

both at the design and the end-user stages, and in new forms.’ The current 

generation of desktop mapping and visualisation tools such as QGIS and Tableau, 

used here, have gone quite some way towards satisfying these requirements. 

Separately, and over forty years ago, R. Goldberg (1974, p34) noted that ‘Virtual 

machines have finally arrived. Dismissed for years as academic curiosities, they are 

now seen as cost-effective techniques for organizing computer system resources to 

provide extraordinary system flexibility and support for certain unique 

applications.’ Only comparatively recently, however, has virtualisation technology 

moved out of back-office, high-end, managed IT infrastructure onto the desktop; 

first with the release in 2007 of VirtualBox (Oracle, 2014b), closely followed in 2008 

by the release of Microsoft Hyper-V (Microsoft, 2014a).  

A8.2 Physical and Virtual computing environment 

The combination of improved hardware virtualisation support with modern multi-

core 64-bit processors (Uhlig et al., 2005) and larger and cheaper amounts of 

Random Access Memory (RAM) has enabled individual researchers, as opposed to 

centralised University IT or Computer Science departments, to provision multiple 

operating systems or software stacks tailored to specific application requirements. 
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Table A8-1 – Matrix of Host/Guest Operating System and Software Installations 

Host OS Windows 
Server 2012 

Windows 
Server 2012R2 

Windows 
Server 2012R2 

Windows 10 
Professional 

Hardware IBM System 
x3850 M2 

Dell Power 
Edge 2950 

Dell Vostro 410 Dell Latitude 
E7440 

Class Server Server Desktop Laptop 
Hypervisor Hyper-V VirtualBox Hyper-V VirtualBox 

Host-based Software Installation(s) 
Software  Oracle 

12.1.0.2.0 
 Oracle 

12.1.0.2.0 
Gephi 0.9.2 
Tableau 10.5 

Guest-based Software Installation(s) 
CentOS 
Desktop 6 

 SAS  
University 
Edition 

 SAS  
University 
Edition 

CentOS Server 
6.7 

   MapR Sandbox 
for Apache Drill 

CentOS 
Desktop 7 

  CLAVIN Ruby 
Nokogiri 
AlchemyAPI 
CLAVIN 

Oracle Linux 
Server 5.11 

   Oracle Endeca 
Information 
Discovery 

Scientific Linux 
6.3 
 

   Edinburgh 
GeoParser 
(03/2016) 

Ubuntu 
Desktop 13.10 

  PostgreSQL 9.3  

Ubuntu 
Desktop 
14.04LTS 

  CLAVIN 
GATE 8.0 
R/RStudio 

 

Ubuntu Server 
14.04.1 LTS 

MapR Hadoop 
4.01 M3 
(5 nodes) 

 MapR Hadoop 
4.01 M3 
(3 nodes) 

MapR Hadoop 
4.01 M5 
(3 nodes) 

Ubuntu 
Desktop 16.04 
LTS 

   R/RStudio 

Windows 
Server 2012 

  MarkLogic 7 
Oracle 12c 
12.1.0.2.0 
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Table A8-1 (p437) shows the matrix of Host and Guest Operating Systems (OS), 

hardware, hypervisors and software installed during this research programme. 

Many Virtual Machines have been ‘spun-up’, ‘cloned’ and, in some cases, ‘torn-

down’. Each Virtual Machine (VM) has been kept as ‘clean’ as possible, with 

minimal software installed, to fulfil a specific task. While this collection of physical 

and virtual infrastructure may seem somewhat excessive, it results from: 

a) hardware and/or Internet (non-)availability; 

b) the difficulty of installing two hypervisors simultaneously on one host when 

any one hypervisor requires dedicated and exclusive access to the Intel VTx 

chipset;  

c) the requirement to travel with data and software available on a laptop, and; 

d) the iterative and exploratory nature of the research project itself (Section 

3.3.2, p107).  

VM, OS, and software installations have been made on commodity desktop (Intel i7 

8-core processor, 16GB memory) and laptop hardware (Intel i7/i5 4-core/2-core 

processors, 16GB memory), upgraded with 256GB or 512GB SSDs. Installations of 

the Oracle 12c RDBMS and the MapR Hadoop distribution have also been 

performed on physical server-class hardware: 

• Oracle 12.1.0.2.0 (with support for JSON) running on a 2U Dell PowerEdge 

2950 with 2*4-core Xeon processors, 32GB memory, 2*73GB and 3*146GB 

15K SAS drives in a Redundant Array of Inexpensive Disks (RAID0). 

• MapR 4.01 Hadoop distribution running on a 4U IBM System x3850 M2 with 

4*6-core Xeon processors, 128GB memory, 4*146GB 10K SAS drives (later 

upgraded to 4*200GB SAS Enterprise SSDs) in RAID0. 

While the server hardware is somewhat dated and, in the case of the Dell 

PowerEdge 2950 extremely noisy, it has been purchased cheaply (<£500 per server 

from eBay) to provide specific processing capabilities. For example, the larger 
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amounts of server RAM were designed to allow either better throughput in Oracle 

12c (which proved, in fact, to be Input/Output bound) or, in the case of the IBM 

System x3850 M2 machine with its 24 processor cores and 128GB of memory, the 

creation of a personal Private Cloud (Figure A8-1) multi-node Hadoop cluster 

consisting of five virtual Ubuntu Servers each configured with 2/4 processors and 

16GB/32GB of memory (more in the cluster controller). 

 

Figure A8-1 – ‘Shed-hosted’ personal Private Cloud (1*2U Dell PowerEdge 2950, 2*4U IBM 
System x3850 M2) 

As this proved unreliable, and with invaluable assistance from University of 

Portsmouth staff (G. Burton, 2017; Marshall & Tear, personal communication, 

2016), a parallel initiative used supercomputer resources in the University’s Data 

Centre: 

• Five High Performance Compute (HPC) nodes each with 12 core CPUs, 24GB 

of RAM and 2TB of diskspace running Scientific Linux 6 (Figure A8-2, p440) 

were configured to form a MapR 5.0.0.32987 Hadoop cluster running Drill 
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and Hive amongst other ‘ecosystem’ tools (Cutting, 2013). The cluster 

offered 60 cores, 120GB RAM and 7.5TB storage; available space is lower 

than total disk space due to replication in the distributed file system.  

• Two further HPC nodes (specified as above) were configured, one running 

Oracle 11g, the other Oracle 12c. A large existing Data Warehouse 

application (Healey, 2011) was deployed on the 2-node Oracle 11g RDBMS 

instance with significant speed improvements. Queries against the OSN 

research database OSNDATA likewise ran appreciably faster on the 2-node 

supercomputer Oracle 12c instance. 

To handle large amounts of data and evaluate different software systems, 

frequently from locations in Sussex and Scotland with poor Internet access, it has 

become necessary to consolidate, and/or acquire, skills in virtualisation, operating 

system and software application installation. 

 

Figure A8-2 – Maintenance activities on the University of Portsmouth’s SCIAMA 
supercomputer 

The need for portability, identified by Barr (1985), has won out over superior 

computing resources sometimes inaccessible over a poor Internet connection and is 

discussed in the following section. 
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A8.3 System architecture 

 

Figure A8-3 – Schematic representation of containers (i.e., physical host, virtual machines, 
Cloud), data flows, data transfer mechanisms and software applications employed in this 

research 
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Figure A8-3 (p441) shows a schematic representation of the the containers (physical 

hosts and virtual machines and Cloud-hosted services) and systems architecture 

arrived at during this research. Along with Table A8-1 (p437) this indicates that the 

Dell Latitude E7440 laptop has been the most heavily used computer throughout, 

running: 

• Oracle 12c (version 12.1.0.2.0); 

• Oracle SQL Developer (version 4.1.2); 

• Tableau (up to version 10.5); 

• Gephi (version 0.9.2), and; 

• Oracle VirtualBox (up to version 5.2.6). 

VirtualBox has been used on the laptop asynchronously to run three VMs, 

dedicated to R statistical analysis (Ubuntu 16.04 LTS), AlchemyAPI processing 

(CentOS 7) and CLAVIN-rest geoparsing (CentOS 7). All VMs access files (over a 

VirtualBox Shared Folder) or data (TCP/IP over the network to Oracle 12c) stored on 

the host. While it is possible to locally test, and then remotely scale-up, 

environments of this type either to Private (‘on premise’) or Public (‘off premise’) 

Cloud computing environments, e.g., Amazon Web Services (AWS) or Windows 

Azure, these can quickly become expensive, particularly if multiple well-specified 

VM instances running experimental applications are created or, worse, accidentally 

left running. The computing environment(s) that have been tested, developed, used 

and sometimes destroyed during this research owe much to free academic 

software licences provided by Microsoft (2014b) and Tableau (2017a). Oracle’s 

developer licensing has proved invaluable when evaluating and using the JSON 

capabilities built into the Oracle 12c RDBMS (Oracle, 2014c). Applications from 

open sources have been widely used (Berico-Technologies, 2014; CentOS, 2014; 

GATE, 2014; Gephi, 2018a; MongoDB, 2014; PostgreSQL, 2014; The R Foundation, 

2018; Ubuntu, 2014) together with several commercial systems used under 

‘developer licensing’ terms (MapR, 2014; MarkLogic, 2014; SAS, 2014). 
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Appendix 9 SPARSITY IN THE INTERACTIONS TABLE 

A9.1 Introduction 

The INTERACTIONS table stores 8,196,380 rows (records) with 149 fields, 3 

created as part of the ETL process (STREAM, STREAMID, UUID) and 146 fields 

common to all DataSift CSV files imported from source data. The table consists of a 

matrix of 1,196,671,480 data points in all. 

A9.2 INTERACTIONS table definition and metadata 

The following query may be used against Oracle 12c’s data dictionary to return 

table metadata: 

SELECT * 
FROM USER_TAB_COLUMNS 
WHERE TABLE_NAME = ‘INTERACTIONS’ 
ORDER BY COLUMN_ID 

The query returns field names, data type definitions and a number of other 

metadata items including number of null values. Salient metadata fields for the 

INTERACTIONS table are reproduced below (Table A9-1). Type size has been 

reduced to 8pt to fit the listing across the page. 

Table A9-1 – Columns in the INTERACTIONS table 

Column name Data type N Distinct N Null Avg 
Col 
Len 

UUID RAW (16) 8196380 0 17 

STREAMID NUMBER (22) 6489088 0 6 

STREAM VARCHAR2 (20) 4 0 11 

DEMOGRAPHIC_GENDER VARCHAR2 (20) 5 3925328 5 

FB_APPLICATION VARCHAR2 (100) 1886 7531547 3 

FB_AUTHOR_AVATAR VARCHAR2 (60) 319008 7353878 6 

FB_AUTHOR_ID NUMBER (22 ,19 ,0) 316992 7353878 2 

FB_AUTHOR_LINK VARCHAR2 (200) 313344 7353878 7 

FB_AUTHOR_NAME VARCHAR2 (200) 283648 7353878 3 
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FB_CAPTION CLOB (4000) 0 146424 113 

FB_DESCRIPTION CLOB (4000) 0 146424 120 

FB_ID VARCHAR2 (40) 849792 7353878 5 

FB_LIKES_COUNT NUMBER (22 ,19 ,0) 23 8194253 2 

FB_LIKES_IDS VARCHAR2 (4000) 7725 8186904 2 

FB_LIKES_NAMES VARCHAR2 (2000) 7734 8186904 2 

FB_LINK VARCHAR2 (4000) 160928 7544057 8 

FB_MESSAGE CLOB (4000) 0 146424 125 

FB_NAME VARCHAR2 (400) 86664 7592440 4 

FB_OG_BY VARCHAR2 (1000) 6110 7997632 2 

FB_OG_LENGTH VARCHAR2 (20) 507 8148764 2 

FB_OG_PAGE VARCHAR2 (40) 125 8196231 2 

FB_SOURCE VARCHAR2 (4000) 19756 7353878 5 

FB_TO_IDS VARCHAR2 (4000) 25864 8125827 2 

FB_TO_NAMES VARCHAR2 (4000) 25560 8125827 2 

FB_TYPE VARCHAR2 (10) 5 7353878 2 

INTERACTION_AUTHOR_AVATAR VARCHAR2 (800) 2821120 0 79 

INTERACTION_AUTHOR_ID NUMBER (22 ,19 ,0) 2425600 0 7 

INTERACTION_AUTHOR_LINK VARCHAR2 (200) 2628352 0 34 

INTERACTION_AUTHOR_NAME VARCHAR2 (200) 2126336 17025 14 

INTERACTION_AUTHOR_USERNAME VARCHAR2 (50) 2180096 842502 11 

INTERACTION_CONTENT CLOB (4000) 0 0 356 

INTERACTION_CREATED_AT TIMESTAMP(9) WITH TIME ZONE (13 ,9) 5216256 0 13 

INTERACTION_GEO_LATITUDE FLOAT (22 ,126) 183120 7941778 2 

INTERACTION_GEO_LONGITUDE FLOAT (22 ,126) 183040 7941778 2 

INTERACTION_ID VARCHAR2 (40) 8196380 0 33 

INTERACTION_LINK VARCHAR2 (200) 8168960 57265 58 

INTERACTION_SCHEMA_VERSION NUMBER (22 ,19 ,0) 1 10 3 

INTERACTION_SOURCE VARCHAR2 (4000) 28718 0 18 

INTERACTION_TAGS VARCHAR2 (200) 24 6477713 10 

INTERACTION_TITLE VARCHAR2 (400) 86664 7592440 4 

INTERACTION_TYPE VARCHAR2 (20) 2 0 9 

KLOUT_SCORE NUMBER (22 ,19 ,0) 90 1076963 3 

LANGUAGE_CONFIDENCE NUMBER (22 ,19 ,0) 84 117911 3 

LANGUAGE_TAG VARCHAR2 (2) 138 117911 3 

LINKS_CREATED_AT VARCHAR2 (2000) 840576 4915230 16 

LINKS_RT_COUNT VARCHAR2 (200) 6374 6754734 2 

LINKS_TITLE CLOB (4000) 0 0 153 

LINKS_URL VARCHAR2 (4000) 640256 4915230 39 

SALIENCE_CONTENT_SENTIMENT NUMBER (22 ,19 ,0) 73 301486 3 

SALIENCE_TITLE_SENTIMENT NUMBER (22 ,19 ,0) 40 7658404 2 

TRENDS_CONTENT VARCHAR2 (200) 36948 5599508 7 



Geotagging matters? 

445 

 

TRENDS_SOURCE VARCHAR2 (20) 1 5599508 5 

TRENDS_TYPE VARCHAR2 (4000) 35912 5599508 30 

TW_CREATED_AT TIMESTAMP(9) WITH TIME ZONE (13 ,9) 2755328 4483533 7 

TW_DOMAINS VARCHAR2 (200) 35400 6692194 4 

TW_GEO_LATITUDE FLOAT (22 ,126) 182016 7943009 2 

TW_GEO_LONGITUDE FLOAT (22 ,126) 182000 7943009 2 

TW_ID NUMBER (22 ,19 ,0) 7339008 842502 10 

TW_IN_RE_TO_SCREEN_NAME VARCHAR2 (40) 219504 7380199 3 

TW_IN_RE_TO_STATUS_ID NUMBER (22 ,19 ,0) 552768 7551801 2 

TW_IN_RE_TO_USER_ID NUMBER (22 ,19 ,0) 215120 7380178 2 

TW_LINKS VARCHAR2 (4000) 803712 6692184 9 

TW_MENTION_IDS VARCHAR2 (200) 483328 6937228 4 

TW_MENTIONS VARCHAR2 (200) 477792 6937228 5 

TW_PLACE_ATT_LOCALITY VARCHAR2 (20) 5 8196374 2 

TW_PLACE_ATT_REGION VARCHAR2 (100) 5 8196374 2 

TW_PLACE_ATT_ST_ADDRESS VARCHAR2 (200) 209 8194932 2 

TW_PLACE_COUNTRY VARCHAR2 (100) 213 7947715 2 

TW_PLACE_COUNTRY_CODE VARCHAR2 (2) 163 7947717 2 

TW_PLACE_FULL_NAME VARCHAR2 (200) 20270 7947713 2 

TW_PLACE_ID VARCHAR2 (20) 19220 7947713 2 

TW_PLACE_NAME VARCHAR2 (100) 15224 7947713 2 

TW_PLACE_PLACE_TYPE VARCHAR2 (40) 5 7947713 2 

TW_PLACE_URL VARCHAR2 (100) 21874 7947713 3 

TW_RT_COUNT NUMBER (22 ,19 ,0) 18258 4555349 2 

TW_RT_CREATED_AT TIMESTAMP(9) WITH TIME ZONE (13 ,9) 2631936 4555349 7 

TW_RT_DOMAINS VARCHAR2 (200) 14746 7038612 4 

TW_RT_ID NUMBER (22 ,19 ,0) 3723776 4555349 6 

TW_RT_LINKS VARCHAR2 (4000) 199904 7038594 9 

TW_RT_MENTION_IDS VARCHAR2 (400) 214816 5945525 5 

TW_RT_MENTIONS VARCHAR2 (400) 228384 5724787 7 

TW_RT_SOURCE VARCHAR2 (400) 2186 4555349 33 

TW_RT_TEXT VARCHAR2 (4000) 921920 4555349 52 

TW_RT_USER_CREATED_AT TIMESTAMP(9) WITH TIME ZONE (13 ,9) 1185536 4555349 7 

TW_RT_USER_DESCRIPTION VARCHAR2 (800) 1102208 5149682 36 

TW_RT_USER_FOLLOWERS_COUNT NUMBER (22 ,19 ,0) 35816 4556823 3 

TW_RT_USER_FRIENDS_COUNT NUMBER (22 ,19 ,0) 18664 4555897 3 

TW_RT_USER_GEO_ENABLED VARCHAR2 (40) 2 5100815 3 

TW_RT_USER_ID NUMBER (22 ,19 ,0) 1162112 4555349 4 

TW_RT_USER_ID_STR VARCHAR2 (10) 1166336 4555349 6 

TW_RT_USER_LANG VARCHAR2 (20) 56 4555349 2 

TW_RT_USER_LISTED_COUNT NUMBER (22 ,19 ,0) 4102 4920218 2 

TW_RT_USER_LOCATION VARCHAR2 (200) 393664 5663542 6 
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TW_RT_USER_NAME VARCHAR2 (200) 1058688 4561421 7 

TW_RT_USER_SCREEN_NAME VARCHAR2 (20) 1192192 4555349 6 

TW_RT_USER_STATUSES_COUNT NUMBER (22 ,19 ,0) 153520 4555376 3 

TW_RT_USER_TIME_ZONE VARCHAR2 (50) 228 5854493 5 

TW_RT_USER_URL VARCHAR2 (4000) 329312 7239231 5 

TW_RT_USER_UTC_OFFSET NUMBER (22 ,19 ,0) 35 5867254 2 

TW_RT_USER_VERIFIED VARCHAR2 (40) 2 5349580 3 

TW_RTED_CREATED_AT TIMESTAMP(9) WITH TIME ZONE (13 ,9) 764992 4555349 7 

TW_RTED_GEO_LATITUDE FLOAT (22 ,126) 5335 8094037 2 

TW_RTED_GEO_LONGITUDE FLOAT (22 ,126) 5330 8094037 2 

TW_RTED_ID NUMBER (22 ,19 ,0) 944192 4555349 6 

TW_RTED_PLACE_ATT_ST_ADDRESS VARCHAR2 (100) 9 8194972 2 

TW_RTED_PLACE_COUNTRY VARCHAR2 (100) 137 8094023 2 

TW_RTED_PLACE_COUNTRY_CODE VARCHAR2 (2) 105 8094023 2 

TW_RTED_PLACE_FULL_NAME VARCHAR2 (200) 5525 8094023 2 

TW_RTED_PLACE_ID VARCHAR2 (40) 4978 8094023 2 

TW_RTED_PLACE_NAME VARCHAR2 (100) 4419 8094023 2 

TW_RTED_PLACE_PLACE_TYPE VARCHAR2 (20) 5 8094023 2 

TW_RTED_PLACE_URL VARCHAR2 (200) 5464 8094023 2 

TW_RTED_SOURCE VARCHAR2 (400) 2270 4555349 30 

TW_RTED_USER_CREATED_AT TIMESTAMP(9) WITH TIME ZONE (13 ,9) 361248 4555349 7 

TW_RTED_USER_DESCRIPTION VARCHAR2 (800) 377888 4731661 45 

TW_RTED_USER_FOLLOWERS_COUNT NUMBER (22 ,19 ,0) 448000 4555498 3 

TW_RTED_USER_FRIENDS_COUNT NUMBER (22 ,19 ,0) 42096 4564818 3 

TW_RTED_USER_GEO_ENABLED VARCHAR2 (40) 2 5169141 3 

TW_RTED_USER_ID NUMBER (22 ,19 ,0) 365568 4555349 4 

TW_RTED_USER_ID_STR VARCHAR2 (20) 362880 4555349 5 

TW_RTED_USER_LANG VARCHAR2 (20) 40 4555349 2 

TW_RTED_USER_LISTED_COUNT NUMBER (22 ,19 ,0) 33464 4667975 3 

TW_RTED_USER_LOCATION VARCHAR2 (200) 156400 5359761 6 

TW_RTED_USER_NAME VARCHAR2 (200) 351872 4559850 7 

TW_RTED_USER_SCREEN_NAME VARCHAR2 (40) 368032 4555349 6 

TW_RTED_USER_STATUSES_COUNT NUMBER (22 ,19 ,0) 155648 4555351 3 

TW_RTED_USER_TIME_ZONE VARCHAR2 (100) 178 5271660 6 

TW_RTED_USER_URL VARCHAR2 (4000) 138608 5978922 10 

TW_RTED_USER_UTC_OFFSET NUMBER (22 ,19 ,0) 35 5285072 2 

TW_RTED_USER_VERIFIED VARCHAR2 (40) 2 5194291 3 

TW_SOURCE VARCHAR2 (400) 7681 4483533 30 

TW_TEXT VARCHAR2 (4000) 3396864 4483533 48 

TW_USER_CREATED_AT TIMESTAMP(9) WITH TIME ZONE (13 ,9) 1213312 4483533 7 

TW_USER_DESCRIPTION VARCHAR2 (4000) 1170560 5111785 36 

TW_USER_FOLLOWERS_COUNT NUMBER (22 ,19 ,0) 63452 4494095 3 
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TW_USER_FRIENDS_COUNT NUMBER (22 ,19 ,0) 27036 4496739 3 

TW_USER_GEO_ENABLED VARCHAR2 (40) 2 4997402 3 

TW_USER_ID NUMBER (22 ,19 ,0) 1220608 4483533 4 

TW_USER_ID_STR VARCHAR2 (10) 1193984 4483533 6 

TW_USER_LANG VARCHAR2 (20) 53 4483533 2 

TW_USER_LISTED_COUNT NUMBER (22 ,19 ,0) 8068 4845836 2 

TW_USER_LOCATION VARCHAR2 (200) 406880 5671841 6 

TW_USER_NAME VARCHAR2 (200) 1118848 4494487 7 

TW_USER_SCREEN_NAME VARCHAR2 (40) 1240704 4483533 7 

TW_USER_STATUSES_COUNT NUMBER (22 ,19 ,0) 271232 4483991 3 

TW_USER_TIME_ZONE VARCHAR2 (40) 230 5696823 6 

TW_USER_URL VARCHAR2 (800) 420032 6780283 7 

TW_USER_UTC_OFFSET NUMBER (22 ,19 ,0) 35 5715812 2 

TW_USER_VERIFIED VARCHAR2 (40) 2 5346570 3 

 

A9.3 PL/SQL programme to count and store Zero Length 

Strings or NULLs into table 

ZERO_LEN_SPARSITY_INT_COLS 

The SQL in the previous section reveals many NULL values (no data) in cells. Counts 

of NULL values in rows across columns by Stream (Appendix 7, p432) have been 

recorded programmatically. 

The PL/SQL script below was developed to count (zero length strings OR NULL 

values) in rows across columns for each of the four Streams held in the 

INTERACTIONS table. 

-- COUNT NULLS from 
http://stackoverflow.com/questions/11642079/query-each-
column-of-a-table-in-a-loop-oracle-database 
-- FIXED 01/04/2017 to cater for (zero length string OR 
null) 
 
-- see the output! 
set serveroutput on 
 
declare  
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  mytable varchar(32) := 'INTERACTIONS'; 
 
  cursor s1 (mytable varchar2) is  
            select column_name  
            from user_tab_columns 
            where table_name = mytable 
            order by column_name; 
 
  mycolumn varchar2(100); 
  query_str varchar2(1000);     
  mycount number(19); 
 
  -- arrays for handling streams from 
http://www.tutorialspoint.com/plsql/plsql_arrays.htm 
  type streamsarray IS VARRAY(4) OF VARCHAR2(20); 
  streams streamsarray; 
  total integer; 
  type allcountsarray is VARRAY(4) OF NUMBER(19); 
  allcounts allcountsarray; 
 
begin 
 
  streams := 
streamsarray('US2012_GEO','US2012_NON_GEO','US2012_NON_
GEO_HISP','SCOT2014'); 
  allcounts := allcountsarray(146424, 1560967, 11276, 
6477713); 
  total := streams.count; 
 
  -- loop over streams 
  for i in 1 .. total loop 
 
    open s1 (mytable); 
   
    loop 
       fetch s1 into mycolumn;  
           exit when s1%NOTFOUND; 
   
       query_str := 'select count(*) from ' || mytable 
|| ' where STREAM = ''' || streams(i) || ''' and ( 
length(trim('  || mycolumn || ')) = 0 or ' || mycolumn 
|| ' is null)'; 
   
       execute immediate query_str into mycount; 
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       dbms_output.put_line('Column ' || mycolumn || ' 
has ' || mycount || ' null values in stream ' || 
streams(i)); 
        
       -- save data to table 
      INSERT INTO ZERO_LEN_SPARSITY_INT_COLS(STREAM, 
COLUMN_NAME, NULL_COUNT, ALL_COUNT) VALUES(streams(i), 
mycolumn, mycount, allcounts(i)); 
      COMMIT; 
   
    end loop; 
     
    close s1; 
   
  end loop; 
   
  -- done 
  dbms_output.put_line('DONE!'); 
end; 

 

A9.4 SQL query to merge/update records into table 

ZERO_LEN_SPARSITY_INTERACTIONS  

The programme listing above inserts into ZERO_LEN_SPARSITY_INT_COLS, a 

staging table with STREAM, COLUMN_NAME, NULL_COUNT, ALL_COUNT for all 

combinations of Streams (4) and Column Names (149). SPARSITY_INT_COLS 

has 596 rows (counts for 4*149 columns, three of which – STREAM, STREAMID, 

UUID – arise from ETL processes). 

The following SQL query, edited in turn for each Stream, is used to transpose the 

resultant 596 rows into 149 rows with 9 columns (COLUMN_NAME and NULL/ALL 

counts for each of the 4 Streams). 

-- CREATE A WIDE SPARSITY TABLE with some updates from 
http://stackoverflow.com/questions/2446764/update-
statement-with-inner-join-on-oracle 
--  CREATE TABLE 
"ADRIANT"."ZERO_LEN_SPARSITY_INTERACTIONS"  
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--   ( "COLUMN_NAME" VARCHAR2(100 BYTE),  
-- "GEO_NULL" NUMBER(19,0),  
-- "GEO_ALL" NUMBER(19,0),  
-- "NONGEO_NULL" NUMBER(19,0),  
-- "NONGEO_ALL" NUMBER(19,0),  
-- "HISP_NULL" NUMBER(19,0),  
-- "HISP_ALL" NUMBER(19,0),  
-- "SCOT_NULL" NUMBER(19,0),  
-- "SCOT_ALL" NUMBER(19,0) 
--  )  
  
-- INSERT LIST OF COLUMNS 
-- insert into ZERO_LEN_SPARSITY_INTERACTIONS 
(COLUMN_NAME) SELECT DISTINCT COLUMN_NAME FROM 
ZERO_LEN_SPARSITY_INT_COLS ORDER BY COLUMN_NAME 
  
merge into ZERO_LEN_SPARSITY_INTERACTIONS t1 
using (select * from ZERO_LEN_SPARSITY_INT_COLS where 
STREAM='SCOT2014') t2 -- change STREAM; 
US2012_GEO/GEO_, US2012_NON_GEO/NONGEO_, 
US2012_NON_GEO_HISP/HISP_, SCOT2014/SCOT_ 
on (t1.COLUMN_NAME = t2.COLUMN_NAME) 
when matched then update set t1.SCOT_NULL = 
t2.NULL_COUNT, t1.SCOT_ALL = t2.ALL_COUNT -- change 
DESTINATION fields 

 

The resulting output has been used in Tableau to graph Sparsity (Section 6.4.3, 

p255). 
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Appendix 10 ALCHEMYAPI PROCESSING 

A10.1 Introduction 

Entity extraction, sentiment analysis etc. in AlchemyAPI are achieved by sending 

text over HTTP to a Cloud-hosted service, with authentication by API key. Successful 

calls result in a response, again received over HTTP, consisting of JSON data, which 

may be stored in the database. The code developed to achieve this result, which 

also had to work within daily rate limit constraints, is reproduced below. 

A10.2 Job controllers 

The Ruby code below is called by two simple, executable, shell scripts every 10/15 

minutes, respectively, by cron (the Unix/Linux job scheduler). 

A10.2.1 run_job.sh 

#!/bin/bash 
cd ~/alchemyapi_ruby 
/usr/bin/ruby process_recs.rb 

 

A10.2.2 run_url_job.sh 

#!/bin/bash 
cd ~/alchemyapi_ruby 
/usr/bin/ruby process_url_recs.rb 

 

A10.3 INTERACTION_CONTENT processing 

These scripts run through 311,575 records of sampled social media text content. 
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A10.3.1 process_recs.rb 

The main program calls AlchemyAPI to determine how many daily transactions are 

available; if > 0 remain the program calculates a process_target number, and 

sets an actual_target number before calling the next program. 

# script name 
puts "\nPROCESS_RECS.RB" 
 
# read xml and parse to determine how many API 
transactions have been consumed today 
# broadly from 
http://www.nokogiri.org/tutorials/searching_a_xml_html_
document.html 
 
require 'rubygems' 
require 'net/http' 
require 'uri' 
require 'json' 
require 'open-uri' 
 
require 'nokogiri' 
 
# url for the check of how many api calls have been 
made 
url = 
'http://access.alchemyapi.com/calls/info/GetAPIKeyInfo?
apikey=[KEY GOES HERE]' 
 
# the full url (could otherwise have more see 
http://stackoverflow.com/questions/32483783/error-
after-trying-to-access-xml-zlibbuferror-ruby 
fullurl = url 
 
# use hint at 
http://stackoverflow.com/questions/32483783/error-
after-trying-to-access-xml-zlibbuferror-ruby to alter 
Accept-Encoding (bizarrely uses an AlchemyAPI example!! 
#opener  = open(fullurl) {|f| f.read } 
xmlreturned = open(fullurl, 'Accept-Encoding' => '') 
{|f| f.read } 
 
#puts xmlreturned 
=begin 
# should output along lines of 
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<?xml version="1.0" encoding="UTF-8"?> 
<results> 
    <status>OK</status> 
    
<consumedDailyTransactions>182</consumedDailyTransactio
ns> 
    
<dailyTransactionLimit>30000</dailyTransactionLimit> 
</results> 
=end 
 
#######################################################
################ 
# put the xmlreturned into nokogiri xml structure (as 
Slop!)          # 
#######################################################
################ 
doc = Nokogiri::Slop(xmlreturned) 
# FINALLY, we know how many API calls have been used 
today!! 
api_calls_used = 
doc.results.consumedDailyTransactions.content 
api_calls_limit = 
doc.results.dailyTransactionLimit.content 
print api_calls_used, " API calls used today...", "\n" 
 
#######################################################
################ 
# control how many to process and pass control to main 
program        # 
#######################################################
################ 
remaining_today = api_calls_limit.to_i  - 
api_calls_used.to_i 
if remaining_today > 0 
 print remaining_today, " API calls remaining 
today...", "\n" 
 process_target = 150 
 if remaining_today > process_target 
  @actual_target = process_target 
  print @actual_target, " is the target!", "\n" 
 else 
  @actual_target = (remaining_today/9).ceil #### seems 
to use 9 api calls/record 
  print @actual_target, " is the target!", "\n" 
 end 
 #### @actual_target = 0 # for testing 
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 if @actual_target >= 1 
  load './mytest04.rb' 
 end 
end 

 

A10.3.2 mytest04.rb 

This program fetches records from Oracle 12c on the VM host, if any remain to be 

processed on run date, loops over them passing data to AlchemyAPI, using a series 

of UPDATE statements to post responses back into the database. 

#script name 
puts "\nMYTEST04.RB" 
 
print @actual_target, " is my target...\n" 
 
# start time 
starttime = Time.now 
 
# set NLS_LANG from https://www.ruby-
forum.com/topic/188066 
ENV['NLS_LANG']='AMERICAN_AMERICA.UTF8' 
 
# database connection gem 
require 'oci8' 
 
# alchemy api 
require './alchemyapi' 
 
# get some data from the db (IP ADDRESS WILL CHANGE 
DEPENDING UPON NETWORK CONNECTION) 
@oci = OCI8.new('adriant/[PWD GOES 
HERE]@//192.168.47.1:1521/OSNDATA') 
 
# check we have less than 30,000 records processed 
today (Alchemy rate limit) 
# ruby date formats from 
http://apidock.com/ruby/DateTime/strftime 
oradate_today = Time.now.strftime("%d-%^b-%y") 
print "Today is ", oradate_today, "\n" 
results_array = [] 
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@oci.exec("select count(*) from alchemy_api where 
trunc(date_processed) = '#{oradate_today}'") { |row| 
results_array << row } 
print results_array[0][0].to_i, " Records processed 
today.\n" 
 
 
# if we have fewer than 30k (and the API calls 
remaining checker has got us to this point) then we're 
off 
if results_array[0][0].to_i <= 30000 
 
 # results into array from 
http://stackoverflow.com/questions/15581388/whats-the-
most-concise-way-to-get-an-oracle-resultset-into-a-
printable-array-in 
 # ruby/oracle oci8 integration from 
http://www.oracle.com/webfolder/technetwork/tutorials/o
be/db/11g/r2/prod/appdev/opensrclang/rubyrails/rubyrail
s.htm 
 
 # put the query results into an array - use rownum <= 
x to restrict number of recs to process 
 results_array = [] 
 # select statement must be in double quotes when 
passing a variable in! 
 @oci.exec("select cast(a.uuid as VARCHAR(40)), 
cast(b.interaction_content as VARCHAR(140)) fred from 
alchemy_api a, interactions b where a.uuid = b.uuid and 
a.date_processed is null and rownum <= 
#{@actual_target}") { |row| results_array << row } 
 
 # how many records selected 
 print results_array.length, " RECORDS SELECTED\n\n\n" 
 
 # output the records 
 ##puts results_array.join("\n") 
 
 # loop over the records processing with the AlchemyAPI 
as required files 
 # the AlchemyAPI integration 
 # use @ to make it accessible from included file from 
http://stackoverflow.com/questions/8334684/how-to-
share-variables-across-my-rb-files 
 @alchemyapi = AlchemyAPI.new() 
 # LOOP OVER DB RECORDS 
 for ss in 0...results_array.length 
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  # loop 
  # IN THE RESULTS ARRAY FIELDS FROM QUERY ARE ARRAY 
NUMBERS [0]..[N] 
  #print results_array[ss][0], ":", 
results_array[ss][1], "\n" 
   
  # set up this_uuid and the demo_text (used in the 
included) 
  # use @ to make it accessible from included file from 
http://stackoverflow.com/questions/8334684/how-to-
share-variables-across-my-rb-files 
  @this_uuid = @demo_text = results_array[ss][0].to_s 
  @demo_text = results_array[ss][1].to_s 
  print @this_uuid, "\n" 
   
  # setup a sql statement 
  @sqlstatement = 'update alchemy_api set ' 
 
  # ***NOTE*** replace single quotes in the returned 
response with two single quotes to allow insert in 
Oracle 
  # loosely from 
http://stackoverflow.com/questions/2180322/ruby-gsub-
doesnt-escape-single-quotes/2180375#2180375 
 
  # ENTITY EXTRACTION 
  @entity_response = 'NODATA' 
  load './_entity_extraction_example.rb' 
  #puts @entity_response, "\n" 
  if @entity_response != 'NODATA' && @entity_response 
!= 'ERROR' 
   #@oci.exec("update alchemy_api set entity_json = 
'#{@entity_response}' where uuid = '#{@this_uuid}'") 
   @sqlstatement << "entity_json = 
'#{@entity_response.gsub("'", "''")}'," 
  end 
   
  # KEYWORD EXTRACTION 
  @keyword_response = 'NODATA' 
  load './_keyword_extraction_example.rb' 
  #puts @keyword_response, "\n" 
  if @keyword_response != 'NODATA' && @keyword_response 
!= 'ERROR' 
   #@oci.exec("update alchemy_api set keyword_json = 
'#{@keyword_response}' where uuid = '#{@this_uuid}'") 
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   @sqlstatement << "keyword_json = 
'#{@keyword_response.gsub("'", "''")}'," 
  end 
   
  # CONCEPT TAGGING 
  @concept_response = 'NODATA' 
  load './_concept_tagging_example.rb' 
  #puts @concept_response, "\n" 
  if @concept_response != 'NODATA' && @concept_response 
!= 'ERROR' 
   #@oci.exec("update alchemy_api set concept_json = 
'#{@concept_response}' where uuid = '#{@this_uuid}'") 
   @sqlstatement << "concept_json = 
'#{@concept_response.gsub("'", "''")}'," 
  end 
   
  # SENTIMENT ANALYSIS 
  @sentiment_response = 'NODATA' 
  load './_sentiment_analysis_example.rb' 
  #puts @sentiment_response, "\n" 
  if @sentiment_response != 'NODATA' && 
@sentiment_response != 'ERROR' 
   #@oci.exec("update alchemy_api set sentiment_json = 
'#{@sentiment_response}' where uuid = '#{@this_uuid}'") 
   @sqlstatement << "sentiment_json = 
'#{@sentiment_response.gsub("'", "''")}'," 
  end 
   
  # RELATIONS EXTRACTION 
  @relations_response = 'NODATA' 
  load './_relations_extraction_example.rb' 
  #puts @relations_response, "\n" 
  if @relations_response != 'NODATA' && 
@relations_response != 'ERROR' 
   #@oci.exec("update alchemy_api set relations_json = 
'#{@relations_response}' where uuid = '#{@this_uuid}'") 
   @sqlstatement << "relations_json = 
'#{@relations_response.gsub("'", "''")}'," 
  end 
   
  # TEXT CATEGORIZATION 
  @category_response = 'NODATA' 
  load './_text_categorization_example.rb' 
  #puts @category_response, "\n" 
  if @category_response != 'NODATA' && 
@category_response != 'ERROR' 
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   #@oci.exec("update alchemy_api set textcat_json = 
'#{@category_response}' where uuid = '#{@this_uuid}'") 
   @sqlstatement << "textcat_json = 
'#{@category_response.gsub("'", "''")}'," 
  end 
   
  # TAXONOMY EXAMPLE 
  @taxonomy_response = 'NODATA' 
  load './_taxonomy_example.rb' 
  #puts @taxonomy_response, "\n" 
  if @taxonomy_response != 'NODATA' && 
@taxonomy_response != 'ERROR' 
   #@oci.exec("update alchemy_api set taxonomy_json = 
'#{@taxonomy_response}' where uuid = '#{@this_uuid}'") 
   @sqlstatement << "taxonomy_json = 
'#{@taxonomy_response.gsub("'", "''")}'," 
  end 
 
  @sqlstatement << "date_processed = sysdate where uuid 
= '#{@this_uuid}'" 
 
  #print "\n\n", @sqlstatement, "\n\n" 
 
  # update date_processed and commit changes 
  @oci.exec(@sqlstatement) 
  @oci.commit 
 
 end 
 
 
end 
 
# end time 
endtime = Time.now 
difftime = endtime - starttime 
print "\nRun in: ", difftime, " seconds\n\n" 

 

A10.3.3 Included files 

The program mytest04.rb includes several scripts, each calling AlchemyAPI in a 

specific way, with text passed in by the controlling program, and a JSON response 

or error returned. 
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puts '# Entity Extraction Example #' 
 
# API 
response = @alchemyapi.entities('text', @demo_text, { 
'sentiment'=>1 }) 
 
if response['status'] == 'OK' 
 #puts '## Response Object ##' 
 #puts JSON.pretty_generate(response) # prettified 
 ##puts JSON(response) # standard on one line 
 @entity_response = JSON(response) 
else 
 puts 'Error in entity extraction call: ' + 
response['statusInfo'] 
 @entity_response = 'ERROR' 
End 

puts '# Keyword Extraction Example #' 
 
# API 
response = @alchemyapi.keywords('text', @demo_text, { 
'sentiment'=>1 }) 
 
if response['status'] == 'OK' 
 @keyword_response = JSON(response) 
else 
 puts 'Error in keyword extraction call: ' + 
response['statusInfo'] 
 @keyword_response = 'ERROR' 
end 

puts '# Concept Tagging Example #' 
 
# API 
response = @alchemyapi.concepts('text', @demo_text)  
 
if response['status'] == 'OK' 
 @concepts_response = JSON(response) 
else 
 puts 'Error in concept tagging call: ' + 
response['statusInfo'] 
 @concepts_response = 'ERROR' 
end 

puts '# Sentiment Analysis Example #' 
 
# API 
response = @alchemyapi.sentiment('text', @demo_text) 
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if response['status'] == 'OK' 
 @sentiment_response = JSON(response) 
else 
 puts 'Error in sentiment analysis call: ' + 
response['statusInfo'] 
 @sentiment_response = 'ERROR' 
end 

puts '# Relation Extraction Example #' 
 
# API 
response = @alchemyapi.relations('text', @demo_text) 
 
if response['status'] == 'OK' 
 @relations_response = JSON(response) 
else 
 puts 'Error in relation extraction call: ' + 
response['statusInfo'] 
 @relations_response = 'ERROR' 
end 

puts '# Text Categorization Example #' 
 
# API 
response = @alchemyapi.category('text', @demo_text) 
 
if response['status'] == 'OK' 
 @category_response = JSON(response) 
else 
 puts 'Error in text categorization call: ' + 
response['statusInfo'] 
 @category_response = 'ERROR' 
end 

puts '# Taxonomy Example #' 
 
# API 
response = @alchemyapi.taxonomy('text', @demo_text) 
 
if response['status'] == 'OK' 
 @taxonomy_response = JSON(response) 
else 
 puts 'Error in taxonomy call: ' + 
response['statusInfo'] 
 @taxonomy_response = 'ERROR' 
end 
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A10.4 LI_LINKS_URLS_DISTINCT processing 

These scripts run through a queue of 641,472 distinct link URLs. 

A10.4.1 process_url_recs.rb 

In a similar way to process_recs.rb, this script determines how many 

transactions remain today before calling the next program. 

# script name 
puts "\nPROCESS_URL_RECS.RB" 
 
# read xml and parse to determine how many API 
transactions have been consumed today 
# broadly from 
http://www.nokogiri.org/tutorials/searching_a_xml_html_
document.html 
 
require 'rubygems' 
require 'net/http' 
require 'uri' 
require 'json' 
require 'open-uri' 
 
require 'nokogiri' 
 
# url for the check of how many api calls have been 
made 
url = 
'http://access.alchemyapi.com/calls/info/GetAPIKeyInfo?
apikey=[KEY GOES HERE]' 
 
# the full url (could otherwise have more see 
http://stackoverflow.com/questions/32483783/error-
after-trying-to-access-xml-zlibbuferror-ruby 
fullurl = url 
 
# use hint at 
http://stackoverflow.com/questions/32483783/error-
after-trying-to-access-xml-zlibbuferror-ruby to alter 
Accept-Encoding (bizarrely uses an AlchemyAPI example!! 
#opener  = open(fullurl) {|f| f.read } 
xmlreturned = open(fullurl, 'Accept-Encoding' => '') 
{|f| f.read } 



Geotagging matters? 

462 

 

 
#puts xmlreturned 
=begin 
# should output along lines of 
<?xml version="1.0" encoding="UTF-8"?> 
<results> 
    <status>OK</status> 
    
<consumedDailyTransactions>182</consumedDailyTransactio
ns> 
    
<dailyTransactionLimit>30000</dailyTransactionLimit> 
</results> 
=end 
 
#######################################################
################ 
# put the xmlreturned into nokogiri xml structure (as 
Slop!)          # 
#######################################################
################ 
doc = Nokogiri::Slop(xmlreturned) 
# FINALLY, we know how many API calls have been used 
today!! 
api_calls_used = 
doc.results.consumedDailyTransactions.content 
api_calls_limit = 
doc.results.dailyTransactionLimit.content 
print api_calls_used, " API calls used today...", "\n" 
 
#######################################################
################ 
# control how many to process and pass control to main 
program        # 
#######################################################
################ 
remaining_today = api_calls_limit.to_i  - 
api_calls_used.to_i 
if remaining_today > 0 
 print remaining_today, " API calls remaining 
today...", "\n" 
 process_target = 250 
 if remaining_today > process_target 
  @actual_target = process_target 
  print @actual_target, " is the target!", "\n" 
 else 
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  @actual_target = (remaining_today/2).ceil #### seems 
to use 1 api calls/record on URLs 
  print @actual_target, " is the target!", "\n" 
 end 
 #### @actual_target = 0 # for testing 
 if @actual_target >= 1 
  load './url_test04.rb' 
 end 
end 

 

A10.4.2 urltest04.rb 

This program fetches records from Oracle 12c on the VM host, if any remain to be 

processed on run date, loops over them passing data to AlchemyAPI, using an 

UPDATE statement to post responses back into the database. 

#script name 
puts "\nURL_TEST04.RB" 
 
####@actual_target=10 
 
print @actual_target, " is my target...\n" 
 
# start time 
starttime = Time.now 
 
# set NLS_LANG from https://www.ruby-
forum.com/topic/188066 
ENV['NLS_LANG']='AMERICAN_AMERICA.UTF8' 
 
# database connection gem 
require 'oci8' 
 
# alchemy api 
require './alchemyapi' 
 
# get some data from the db (IP ADDRESS WILL CHANGE 
DEPENDING UPON NETWORK CONNECTION) 
@oci = OCI8.new('adriant/[PWD GOES 
HERE]@//192.168.47.1:1521/OSNDATA') 
 
# check we have less than 30,000 records processed 
today (Alchemy rate limit) 
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# ruby date formats from 
http://apidock.com/ruby/DateTime/strftime 
oradate_today = Time.now.strftime("%d-%^b-%y") 
print "Today is ", oradate_today, "\n" 
results_array = [] 
@oci.exec("select count(*) from li_links_urls_distinct 
where trunc(date_processed) = '#{oradate_today}'") { 
|row| results_array << row } 
print results_array[0][0].to_i, " Records processed 
today.\n" 
 
 
# if we have fewer than 30k (and the API calls 
remaining checker has got us to this point) then we're 
off 
if results_array[0][0].to_i <= 30000 
 
 # results into array from 
http://stackoverflow.com/questions/15581388/whats-the-
most-concise-way-to-get-an-oracle-resultset-into-a-
printable-array-in 
 # ruby/oracle oci8 integration from 
http://www.oracle.com/webfolder/technetwork/tutorials/o
be/db/11g/r2/prod/appdev/opensrclang/rubyrails/rubyrail
s.htm 
 
 # put the query results into an array - use rownum <= 
x to restrict number of recs to process 
 results_array = [] 
 # select statement must be in double quotes when 
passing a variable in! 
 @oci.exec("select uuid, link_url from 
li_links_urls_distinct where date_processed is null and 
rownum <= #{@actual_target}") { |row| results_array << 
row } 
 
 # how many records selected 
 print results_array.length, " RECORDS SELECTED\n\n\n" 
 
 # output the records 
 ##puts results_array.join("\n") 
 
 # loop over the records processing with the AlchemyAPI 
as required files 
 # the AlchemyAPI integration 
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 # use @ to make it accessible from included file from 
http://stackoverflow.com/questions/8334684/how-to-
share-variables-across-my-rb-files 
 @alchemyapi = AlchemyAPI.new() 
 # LOOP OVER DB RECORDS 
 for ss in 0...results_array.length 
   
  # loop 
  @this_uuid = @demo_text = results_array[ss][0].to_s 
  @this_url = results_array[ss][1].to_s   
  print @this_url, "\n" 
   
   
  # ENTITY EXTRACTION 
  @entity_response = 'NODATA' 
 
  # API 
  response = @alchemyapi.entities('url', @this_url) 
 
  if response['status'] == 'OK' 
   # the JSON returned by the API 
   ##puts JSON.pretty_generate(response) # prettified 
   ##puts JSON(response) # standard on one line 
   @entity_response = JSON(response) 
  else 
   # store the error as a snippet of JSON to store in 
the db 
   @entity_response = '{"Error":"' + 
response['statusInfo'] + '"}' 
   puts @entity_response 
  end 
 
  # UPDATE the clob with a bind parameter (or with the 
error message if it has failed, e.g. 404) 
  # from https://learncodeshare.net/2016/11/04/update-
crud-using-ruby-oci8/ 
  statement = "update li_links_urls_distinct set 
entity_json = :this_response, date_processed = sysdate 
where uuid = :this_uuid" 
  cursor = @oci.parse(statement) 
  cursor.bind_param(:this_response,@entity_response) 
  cursor.bind_param(:this_uuid,@this_uuid) 
  cursor.exec 
  @oci.commit 
 
 end 
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end 
 
# end time 
endtime = Time.now 
difftime = endtime - starttime 
print "\nRun in: ", difftime, " seconds\n\n" 

 

A10.5 Sample output 

AlchemyAPI produces verbose output in JSON. The following Entities detected by 

AlchemyAPI against CNN’s Scottish Independence Referendum results page 

(URL=http: //edition.cnn.com/2014/09/18/world/europe/scotland-independence-

vote/index.html) are shown below. 

{ 

    "status": "OK", 
    "usage": "By accessing AlchemyAPI or using 
information generated by AlchemyAPI, you are agreeing 
to be bound by the AlchemyAPI Terms of Use: 
http://www.alchemyapi.com/company/terms.html", 
    "url": 
"http://edition.cnn.com/2014/09/18/world/europe/scotlan
d-independence-vote/index.html", 
    "language": "english", 
    "entities": [{ 
            "type": "Country", 
            "relevance": "0.813336", 
            "count": "22", 
            "text": "Scotland", 
            "disambiguated": { 
                "subType": ["Location", 
"AdministrativeDivision", "GovernmentalJurisdiction"], 
                "name": "Scotland", 
                "website": "http://www.scotland.org/", 
                "dbpedia": 
"http://dbpedia.org/resource/Scotland", 
                "freebase": 
"http://rdf.freebase.com/ns/m.01xk6b", 
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                "geonames": 
"http://sws.geonames.org/2643576/", 
                "opencyc": 
"http://sw.opencyc.org/concept/Mx4rvViIm5wpEbGdrcN5Y29y
cA", 
                "yago": "http://yago-
knowledge.org/resource/Scotland" 
            } 
        }, { 
            "type": "City", 
            "relevance": "0.436839", 
            "count": "6", 
            "text": "Glasgow", 
            "disambiguated": { 
                "subType": ["AdministrativeDivision", 
"ScottishCouncilArea"], 
                "name": "Glasgow", 
                "website": 
"http://www.glasgow.gov.uk/", 
                "dbpedia": 
"http://dbpedia.org/resource/Glasgow", 
                "freebase": 
"http://rdf.freebase.com/ns/m.0hyxv", 
                "geonames": 
"http://sws.geonames.org/2648579/", 
                "yago": "http://yago-
knowledge.org/resource/Glasgow" 
            } 
        }, { 
            "type": "City", 
            "relevance": "0.408424", 
            "count": "5", 
            "text": "Edinburgh", 
            "disambiguated": { 
                "subType": ["AdministrativeDivision", 
"PlaceWithNeighborhoods", 
"AwardPresentingOrganization"], 
                "name": "Edinburgh", 
                "website": 
"http://www.edinburgh.gov.uk/", 
                "dbpedia": 
"http://dbpedia.org/resource/Edinburgh", 
                "freebase": 
"http://rdf.freebase.com/ns/m.02m77", 
                "geonames": 
"http://sws.geonames.org/2650225/", 



Geotagging matters? 

468 

 

                "yago": "http://yago-
knowledge.org/resource/Edinburgh" 
            } 
        }, { 
            "type": "Company", 
            "relevance": "0.321778", 
            "count": "4", 
            "text": "CNN", 
            "disambiguated": { 
                "subType": ["Broadcast", "AwardWinner", 
"RadioNetwork", "TVNetwork"], 
                "name": "CNN", 
                "website": "http://www.cnn.com/", 
                "dbpedia": 
"http://dbpedia.org/resource/CNN", 
                "freebase": 
"http://rdf.freebase.com/ns/m.0gsgr", 
                "yago": "http://yago-
knowledge.org/resource/CNN" 
            } 
        }, { 
            "type": "Person", 
            "relevance": "0.321343", 
            "count": "3", 
            "text": "Alex Salmond", 
            "disambiguated": { 
                "subType": ["Politician", 
"OfficeHolder", "TVActor"], 
                "name": "Alex Salmond", 
                "website": "http://www.snp.org", 
                "dbpedia": 
"http://dbpedia.org/resource/Alex_Salmond", 
                "freebase": 
"http://rdf.freebase.com/ns/m.01k0jf", 
                "yago": "http://yago-
knowledge.org/resource/Alex_Salmond" 
            } 
        }, { 
            "type": "Country", 
            "relevance": "0.288505", 
            "count": "3", 
            "text": "United Kingdom", 
            "disambiguated": { 
                "subType": ["Location", 
"AdministrativeDivision", "GovernmentalJurisdiction", 
"Kingdom", "MeteorologicalService"], 
                "name": "United Kingdom", 
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                "geo": "51.5 -0.11666666666666667", 
                "website": "http://www.royal.gov.uk/", 
                "dbpedia": 
"http://dbpedia.org/resource/United_Kingdom", 
                "freebase": 
"http://rdf.freebase.com/ns/m.07ssc", 
                "ciaFactbook": "http://www4.wiwiss.fu-
berlin.de/factbook/resource/United_Kingdom", 
                "opencyc": 
"http://sw.opencyc.org/concept/Mx4rvViRhJwpEbGdrcN5Y29y
cA", 
                "yago": "http://yago-
knowledge.org/resource/United_Kingdom" 
            } 
        }, { 
            "type": "Person", 
            "relevance": "0.284499", 
            "count": "2", 
            "text": "Prime Minister David Cameron" 
        }, { 
            "type": "City", 
            "relevance": "0.260409", 
            "count": "2", 
            "text": "Edinburgh" 
        }, { 
            "type": "StateOrCounty", 
            "relevance": "0.233592", 
            "count": "2", 
            "text": "Aberdeenshire" 
        }, { 
            "type": "Region", 
            "relevance": "0.227693", 
            "count": "2", 
            "text": "Northern Ireland" 
        }, { 
            "type": "Country", 
            "relevance": "0.222848", 
            "count": "2", 
            "text": "Wales", 
            "disambiguated": { 
                "subType": ["Location", 
"AdministrativeDivision", "GovernmentalJurisdiction", 
"FilmScreeningVenue"], 
                "name": "Wales", 
                "website": "http://www.visitwales.com", 
                "dbpedia": 
"http://dbpedia.org/resource/Wales", 
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                "freebase": 
"http://rdf.freebase.com/ns/m.0j5g9", 
                "geonames": 
"http://sws.geonames.org/2636718/", 
                "opencyc": 
"http://sw.opencyc.org/concept/Mx4rvVitvJwpEbGdrcN5Y29y
cA", 
                "yago": "http://yago-
knowledge.org/resource/Wales" 
            } 
        }, { 
            "type": "Organization", 
            "relevance": "0.222649", 
            "count": "1", 
            "text": "Scottish Parliament", 
            "disambiguated": { 
                "subType": ["GovernmentalBody"], 
                "name": "Scottish Parliament", 
                "geo": "55.95194 -3.17513", 
                "website": 
"http://www.scottish.parliament.uk", 
                "dbpedia": 
"http://dbpedia.org/resource/Scottish_Parliament", 
                "freebase": 
"http://rdf.freebase.com/ns/m.0glvp", 
                "yago": "http://yago-
knowledge.org/resource/Scottish_Parliament" 
            } 
        }, { 
            "type": "Country", 
            "relevance": "0.220393", 
            "count": "2", 
            "text": "England", 
            "disambiguated": { 
                "subType": ["Location", 
"PoliticalDistrict", "AdministrativeDivision", 
"GovernmentalJurisdiction"], 
                "name": "England", 
                "website": "http://www.direct.gov.uk/", 
                "dbpedia": 
"http://dbpedia.org/resource/England", 
                "freebase": 
"http://rdf.freebase.com/ns/m.02jx1", 
                "geonames": 
"http://sws.geonames.org/3333218/", 
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                "opencyc": 
"http://sw.opencyc.org/concept/Mx4rvViWaZwpEbGdrcN5Y29y
cA", 
                "yago": "http://yago-
knowledge.org/resource/England" 
            } 
        }, { 
            "type": "JobTitle", 
            "relevance": "0.219891", 
            "count": "1", 
            "text": "Prime minister" 
        }, { 
            "type": "Person", 
            "relevance": "0.218625", 
            "count": "2", 
            "text": "Sue Bruce" 
        }, { 
            "type": "JobTitle", 
            "relevance": "0.21754", 
            "count": "2", 
            "text": "officer" 
        }, { 
            "type": "Person", 
            "relevance": "0.212998", 
            "count": "1", 
            "text": "Prime Minister Gordon Brown", 
            "disambiguated": { 
                "subType": ["Politician", 
"PoliticalAppointer", "TVActor"], 
                "name": "Gordon Brown", 
                "website": 
"http://www.number10.gov.uk/", 
                "dbpedia": 
"http://dbpedia.org/resource/Gordon_Brown", 
                "freebase": 
"http://rdf.freebase.com/ns/m.03f77", 
                "yago": "http://yago-
knowledge.org/resource/Gordon_Brown" 
            } 
        }, { 
            "type": "City", 
            "relevance": "0.208436", 
            "count": "1", 
            "text": "Dundee", 
            "disambiguated": { 
                "subType": ["AdministrativeDivision", 
"ScottishCouncilArea"], 
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                "name": "Dundee", 
                "dbpedia": 
"http://dbpedia.org/resource/Dundee", 
                "freebase": 
"http://rdf.freebase.com/ns/m.02fvv", 
                "geonames": 
"http://sws.geonames.org/2650752/", 
                "yago": "http://yago-
knowledge.org/resource/Dundee" 
            } 
        }, { 
            "type": "FieldTerminology", 
            "relevance": "0.207396", 
            "count": "1", 
            "text": "oil-rich city" 
        }, { 
            "type": "Organization", 
            "relevance": "0.206967", 
            "count": "1", 
            "text": "Glasgow City Council" 
        }, { 
            "type": "City", 
            "relevance": "0.196357", 
            "count": "1", 
            "text": "Aberdeen", 
            "disambiguated": { 
                "subType": ["AdministrativeDivision", 
"ScottishCouncilArea"], 
                "name": "Aberdeen", 
                "website": 
"http://www.aberdeencity.gov.uk/", 
                "dbpedia": 
"http://dbpedia.org/resource/Aberdeen", 
                "freebase": 
"http://rdf.freebase.com/ns/m.0rng", 
                "geonames": 
"http://sws.geonames.org/2657832/", 
                "yago": "http://yago-
knowledge.org/resource/Aberdeen" 
            } 
        }, { 
            "type": "Person", 
            "relevance": "0.191401", 
            "count": "1", 
            "text": "Phil MacHugh", 
            "disambiguated": { 
                "name": "Phil MacHugh", 
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                "dbpedia": 
"http://dbpedia.org/resource/Phil_MacHugh", 
                "freebase": 
"http://rdf.freebase.com/ns/m.09gdwll" 
            } 
        }, { 
            "type": "Person", 
            "relevance": "0.188891", 
            "count": "1", 
            "text": "Alistair Darling", 
            "disambiguated": { 
                "subType": ["Politician", 
"Chancellor"], 
                "name": "Alistair Darling", 
                "dbpedia": 
"http://dbpedia.org/resource/Alistair_Darling", 
                "freebase": 
"http://rdf.freebase.com/ns/m.01zgx3", 
                "yago": "http://yago-
knowledge.org/resource/Alistair_Darling" 
            } 
        }, { 
            "type": "Person", 
            "relevance": "0.187902", 
            "count": "1", 
            "text": "Nic Robertson", 
            "disambiguated": { 
                "subType": [], 
                "name": "Nic Robertson", 
                "dbpedia": 
"http://dbpedia.org/resource/Nic_Robertson", 
                "freebase": 
"http://rdf.freebase.com/ns/m.08783w", 
                "yago": "http://yago-
knowledge.org/resource/Nic_Robertson" 
            } 
        }, { 
            "type": "Organization", 
            "relevance": "0.18525", 
            "count": "1", 
            "text": "EU" 
        }, { 
            "type": "Person", 
            "relevance": "0.184526", 
            "count": "1", 
            "text": "Mary Pitcaithly" 
        }, { 
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            "type": "City", 
            "relevance": "0.183566", 
            "count": "1", 
            "text": "Hong Kong", 
            "disambiguated": { 
                "subType": ["HumanLanguage", 
"AdministrativeDivision", "Country", 
"GovernmentalJurisdiction", "BodyOfWater", "Cuisine"], 
                "name": "Hong Kong", 
                "geo": "22.278333333333332 
114.1588888888889", 
                "website": "http://www.gov.hk/en/", 
                "dbpedia": 
"http://dbpedia.org/resource/Hong_Kong", 
                "freebase": 
"http://rdf.freebase.com/ns/m.03h64", 
                "geonames": 
"http://sws.geonames.org/1819727/", 
                "ciaFactbook": "http://www4.wiwiss.fu-
berlin.de/factbook/resource/Hong_Kong", 
                "opencyc": 
"http://sw.opencyc.org/concept/Mx4rvVipapwpEbGdrcN5Y29y
cA", 
                "yago": "http://yago-
knowledge.org/resource/Hong_Kong" 
            } 
        }, { 
            "type": "City", 
            "relevance": "0.183279", 
            "count": "1", 
            "text": "Dumfries", 
            "disambiguated": { 
                "subType": [], 
                "name": "Dumfries", 
                "dbpedia": 
"http://dbpedia.org/resource/Dumfries", 
                "freebase": 
"http://rdf.freebase.com/ns/m.0zc6f", 
                "geonames": 
"http://sws.geonames.org/2650798/", 
                "yago": "http://yago-
knowledge.org/resource/Dumfries" 
            } 
        }, { 
            "type": "Person", 
            "relevance": "0.181844", 
            "count": "1", 
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            "text": "Angus" 
        }, { 
            "type": "City", 
            "relevance": "0.179558", 
            "count": "1", 
            "text": "London", 
            "disambiguated": { 
                "subType": ["AdministrativeDivision", 
"GovernmentalJurisdiction", "OlympicHostCity", 
"PlaceWithNeighborhoods"], 
                "name": "London", 
                "geo": "51.50805555555556 -
0.12472222222222222", 
                "website": "http://www.london.gov.uk/", 
                "dbpedia": 
"http://dbpedia.org/resource/London", 
                "freebase": 
"http://rdf.freebase.com/ns/m.04jpl", 
                "geonames": 
"http://sws.geonames.org/2643743/", 
                "yago": "http://yago-
knowledge.org/resource/London" 
            } 
        }, { 
            "type": "Region", 
            "relevance": "0.177794", 
            "count": "1", 
            "text": "East Dunbartonshire" 
        }, { 
            "type": "Crime", 
            "relevance": "0.177649", 
            "count": "1", 
            "text": "fraud" 
        }, { 
            "type": "Person", 
            "relevance": "0.174821", 
            "count": "1", 
            "text": "Euan McKirdy" 
        }, { 
            "type": "City", 
            "relevance": "0.174539", 
            "count": "1", 
            "text": "Kirkcaldy", 
            "disambiguated": { 
                "subType": [], 
                "name": "Kirkcaldy", 
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                "dbpedia": 
"http://dbpedia.org/resource/Kirkcaldy", 
                "freebase": 
"http://rdf.freebase.com/ns/m.01zrs_", 
                "geonames": 
"http://sws.geonames.org/2645298/", 
                "yago": "http://yago-
knowledge.org/resource/Kirkcaldy" 
            } 
        }, { 
            "type": "City", 
            "relevance": "0.173872", 
            "count": "1", 
            "text": "Galloway", 
            "disambiguated": { 
                "subType": [], 
                "name": "Galloway, West Virginia", 
                "dbpedia": 
"http://dbpedia.org/resource/Galloway,_West_Virginia", 
                "freebase": 
"http://rdf.freebase.com/ns/m.041799d" 
            } 
        }, { 
            "type": "City", 
            "relevance": "0.172553", 
            "count": "1", 
            "text": "Strichen", 
            "disambiguated": { 
                "subType": [], 
                "name": "Strichen", 
                "geo": "57.5865 -2.0904", 
                "dbpedia": 
"http://dbpedia.org/resource/Strichen", 
                "freebase": 
"http://rdf.freebase.com/ns/m.027lhd1", 
                "geonames": 
"http://sws.geonames.org/2636654/", 
                "yago": "http://yago-
knowledge.org/resource/Strichen" 
            } 
        }, { 
            "type": "Person", 
            "relevance": "0.170637", 
            "count": "1", 
            "text": "Laura Smith-Spark" 
        }, { 
            "type": "Person", 



Geotagging matters? 

477 

 

            "relevance": "0.163373", 
            "count": "1", 
            "text": "Richard Allen Greene" 
        }, { 
            "type": "Person", 
            "relevance": "0.153864", 
            "count": "1", 
            "text": "Greg Botelho" 
        }, { 
            "type": "Person", 
            "relevance": "0.144819", 
            "count": "1", 
            "text": "Lindsay Isaac" 
        }, { 
            "type": "Quantity", 
            "relevance": "0.144819", 
            "count": "1", 
            "text": "17-year" 
        }, { 
            "type": "Quantity", 
            "relevance": "0.144819", 
            "count": "1", 
            "text": "46%" 
        }, { 
            "type": "Quantity", 
            "relevance": "0.144819", 
            "count": "1", 
            "text": "54%" 
        }, { 
            "type": "Quantity", 
            "relevance": "0.144819", 
            "count": "1", 
            "text": "75%" 
        }, { 
            "type": "Quantity", 
            "relevance": "0.144819", 
            "count": "1", 
            "text": "80%" 
        }, { 
            "type": "Quantity", 
            "relevance": "0.144819", 
            "count": "1", 
            "text": "86%" 
        }, { 
            "type": "Quantity", 
            "relevance": "0.144819", 
            "count": "1", 
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            "text": "8%" 
        } 
    ] 
} 
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Appendix 11 SQL STATEMENTS 

Many Structured Query Language (SQL) statements have been designed and 

executed during this research; to create and populate tables, check data 

consistency upon loading and to query resultant data sets. 

The full set of over 100 statements is too voluminous to reproduce here. However, 

several key SQL statements, referenced in the text by the item number adjacent to 

each SQL statement, are shown below. 

Item SQL 
1.  SELECT  

TRUNC(INTERACTION_CREATED_AT) AS INT_DATE,  
COUNT(*) AS N_OBAMA 
FROM INTERACTIONS   
WHERE STREAM <> 'SCOT2014' 
AND CONTAINS (INTERACTION_CONTENT, 'OBAMA') > 0 
GROUP BY TRUNC(INTERACTION_CREATED_AT) 
ORDER BY TRUNC(INTERACTION_CREATED_AT) 

2.  SELECT COUNT(*)  
FROM INTERACTIONS  
WHERE STREAM LIKE 'US%' 
AND INTERACTION_CONTENT LIKE '%OH%' 

3.  SELECT YEAR, TYPE, COUNT(*) 
FROM DOCUMENTS 
GROUP BY YEAR, TYPE 
ORDER BY YEAR 

4.  SELECT JSON_DATAGUIDE(JSON_DOC) 
FROM JSON_INTERACTIONS 

5.  CREATE TABLE scot2014_jdump_00001 (json_document CLOB) 
ORGANIZATION EXTERNAL  
( 
TYPE ORACLE_LOADER DEFAULT DIRECTORY scot2014_entry_dir 
 ACCESS PARAMETERS 
  (RECORDS DELIMITED BY '\n' 
  READSIZE 1048576  
  CHARACTERSET 'utf8' 
  DISABLE_DIRECTORY_LINK_CHECK 
  BADFILE scot2014_output_dir: 'JSONDumpFile_00001.bad' 
  LOGFILE scot2014_output_dir: 'JSONDumpFile_00001.log' 
  FIELDS (json_document CHAR(1048576))) 
 LOCATION (scot2014_entry_dir:'part-r-00001.json') 
) 
PARALLEL 
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REJECT LIMIT UNLIMITED; 

6.  CREATE TABLE SCOT2014_JSON 
( 
JSON_DOC CLOB, 
CONSTRAINT ENSURE_SCOT_JSON CHECK (JSON_DOC IS JSON) 
) 

7.  INSERT INTO SCOT2014_JSON (JSON_DOC) 
SELECT JSON_DOC FROM scot2014_jdump_00001 

8.  SELECT INTERACTION_AUTHOR_NAME, INTERACTION_CONTENT 
FROM INTERACTIONS  
WHERE INTERACTION_AUTHOR_NAME ='FM Alex Salmond'  

9.  SELECT COUNT(*)  
FROM INTERACTIONS 

10.  SELECT STREAM, COUNT(*) 
FROM INTERACTIONS 
GROUP BY STREAM 

11.  SELECT 
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS N 
FROM INTERACTIONS 
GROUP BY INTERACTION_AUTHOR_ID 
ORDER BY N DESC 

12.  -- USERS MAKING LTE 5 INTERACTIONS, HOW MANY INTERACTIONS 
IN TOTAL = 3171447 
SELECT SUM(USER_N_INTS) FROM 
( 
  SELECT  
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS USER_N_INTS 
  FROM INTERACTIONS  
  GROUP BY INTERACTION_AUTHOR_ID  
  HAVING COUNT(*) <= 5 
) 
 
-- USERS MAKING GTE 6 INTERACTIONS, HOW MANY INTERACTIONS 
IN TOTAL = 5024933 
SELECT SUM(USER_N_INTS) FROM 
( 
  SELECT  
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS USER_N_INTS 
  FROM INTERACTIONS  
  GROUP BY INTERACTION_AUTHOR_ID  
  HAVING COUNT(*) >= 6 
) 

13.  /***************************************** 
* 
* ALL 
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* 
*****************************************/ 
SELECT 
  'ALL' AS COLDESC, 
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS N 
FROM  
  VW_INT_GEO_SCORING_TOTAL A,  
  INTERACTIONS B 
WHERE 
  A.UUID = B.UUID 
GROUP BY  
  INTERACTION_AUTHOR_ID 
-- keep going 
UNION ALL 
/***************************************** 
* 
* US2012 
* 
*****************************************/  
-- US2012 
SELECT 
  'US2012' AS COLDESC, 
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS N 
FROM  
  VW_INT_GEO_SCORING_TOTAL A,  
  INTERACTIONS B 
WHERE 
  A.UUID = B.UUID 
AND 
  B.STREAM <> 'SCOT2014' 
GROUP BY  
  INTERACTION_AUTHOR_ID 
-- keep going 
UNION ALL 
/***************************************** 
* 
* BY STREAM (WILL PICK UP SCOT2014) 
* 
*****************************************/  
-- stream 
SELECT 
  STREAM AS COLDESC, 
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS N 
FROM  
  VW_INT_GEO_SCORING_TOTAL A,  
  INTERACTIONS B 
WHERE 
  A.UUID = B.UUID 
GROUP BY  
  STREAM, 
  INTERACTION_AUTHOR_ID 
-- keep going 
UNION ALL 
/***************************************** 
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* 
* BY SOURCE (ALL) 
* 
*****************************************/  
-- facebook 
SELECT 
  'FB - ALL' AS COLDESC, 
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS N 
FROM  
  VW_INT_GEO_SCORING_TOTAL A,  
  INTERACTIONS B 
WHERE 
  A.UUID = B.UUID 
AND 
  B.FB_ID IS NOT NULL 
GROUP BY  
  INTERACTION_AUTHOR_ID 
-- keep going 
UNION ALL 
-- twitter 
SELECT 
  'TW - ALL' AS COLDESC, 
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS N 
FROM  
  VW_INT_GEO_SCORING_TOTAL A,  
  INTERACTIONS B 
WHERE 
  A.UUID = B.UUID 
AND 
  ((B.TW_RT_ID IS NULL OR B.TW_RT_ID = '')  
AND  
  (B.TW_ID IS NOT NULL)) 
GROUP BY  
  INTERACTION_AUTHOR_ID 
-- keep going 
UNION ALL 
-- retweet 
SELECT 
  'RT - ALL' AS COLDESC, 
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS N 
FROM  
  VW_INT_GEO_SCORING_TOTAL A,  
  INTERACTIONS B 
WHERE 
  A.UUID = B.UUID 
AND 
  ((B.TW_RT_ID IS NOT NULL OR B.TW_RT_ID <> '')  
AND  
  (B.TW_ID IS NOT NULL)) 
GROUP BY  
  INTERACTION_AUTHOR_ID 
-- keep going   
UNION ALL 
/***************************************** 
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* 
* BY SOURCE (GEO) 
* 
*****************************************/  
-- facebook geo 
SELECT 
  'FB - GEO' AS COLDESC, 
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS N 
FROM  
  VW_INT_GEO_SCORING_TOTAL A,  
  INTERACTIONS B 
WHERE 
  A.UUID = B.UUID 
AND 
  B.FB_ID IS NOT NULL 
AND 
  INTERACTION_GEO_LATITUDE IS NOT NULL 
AND 
  INTERACTION_GEO_LATITUDE <> 0 
GROUP BY  
  INTERACTION_AUTHOR_ID 
-- keep going 
UNION ALL 
-- twitter tweets geo 
SELECT 
  'TW - GEO' AS COLDESC, 
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS N 
FROM  
  VW_INT_GEO_SCORING_TOTAL A,  
  INTERACTIONS B 
WHERE 
  A.UUID = B.UUID 
AND 
  ((B.TW_RT_ID IS NULL OR B.TW_RT_ID = '')  
AND  
  (B.TW_ID IS NOT NULL)) 
AND 
  INTERACTION_GEO_LATITUDE IS NOT NULL 
AND 
  INTERACTION_GEO_LATITUDE <> 0 
GROUP BY  
  INTERACTION_AUTHOR_ID 
-- keep going 
UNION ALL 
-- twitter retweets geo 
SELECT 
  'RT - GEO' AS COLDESC, 
  INTERACTION_AUTHOR_ID, 
  COUNT(*) AS N 
FROM  
  VW_INT_GEO_SCORING_TOTAL A,  
  INTERACTIONS B 
WHERE 
  A.UUID = B.UUID 
AND 
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  ((B.TW_RT_ID IS NOT NULL OR B.TW_RT_ID <> '')  
AND  
  (B.TW_ID IS NOT NULL)) 
AND 
  TW_RTED_GEO_LATITUDE IS NOT NULL 
AND 
  TW_RTED_GEO_LATITUDE <> 0 
GROUP BY  
  INTERACTION_AUTHOR_ID 
/***************************************** 
* 
* DONE ALL PERMUTATIONS 
* 
*****************************************/ 

14.  SELECT COUNT(*) 
FROM VW_USER_COUNT_INTS 
WHERE N >= 1000 
ORDER BY N DESC 

15.  SELECT  
  TW_PLACE_COUNTRY, 
  TW_PLACE_COUNTRY_CODE, 
  TW_PLACE_FULL_NAME, 
  TW_PLACE_ID, 
  TW_PLACE_NAME, 
  TW_PLACE_PLACE_TYPE 
FROM INTERACTIONS  
WHERE TW_PLACE_ID IS NOT NULL  
AND LENGTH(TRIM(TW_PLACE_ID)) <> 0 

16.  CREATE OR REPLACE VIEW VW_INT_GEO_SCORING_TOTAL AS  
SELECT UUID, 
(case  
 when (TW_RT_USER_GEO_ENABLED is not null) then 1  
 else 0 end) as P_TW_RT_USER_GEO_ENABLED, 
(case  
 when (TW_RTED_USER_GEO_ENABLED is not null) then 1  
 else 0 end) as P_TW_RTED_USER_GEO_ENABLED, 
(case  
 when (TW_RTED_USER_TIME_ZONE is not null) then 1  
 else 0 end) as P_TW_RTED_USER_TIME_ZONE, 
(case  
 when (TW_RTED_USER_UTC_OFFSET is not null) then 1  
 else 0 end) as P_TW_RTED_USER_UTC_OFFSET, 
(case  
 when (TW_RTED_USER_LOCATION is not null) then 1  
 else 0 end) as P_TW_RTED_USER_LOCATION, 
(case  
 when (TW_RT_USER_LOCATION is not null) then 1  
 else 0 end) as P_TW_RT_USER_LOCATION, 
(case  
 when (TW_USER_LOCATION is not null) then 1  
 else 0 end) as P_TW_USER_LOCATION, 
(case  
 when (TW_USER_TIME_ZONE is not null) then 1  
 else 0 end) as P_TW_USER_TIME_ZONE, 
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(case  
 when (TW_USER_UTC_OFFSET is not null) then 1  
 else 0 end) as P_TW_USER_UTC_OFFSET, 
(case  
 when (TW_RT_USER_TIME_ZONE is not null) then 1  
 else 0 end) as P_TW_RT_USER_TIME_ZONE, 
(case  
 when (TW_RT_USER_UTC_OFFSET is not null) then 1  
 else 0 end) as P_TW_RT_USER_UTC_OFFSET, 
(case  
 when (INTERACTION_GEO_LATITUDE is not null) then 50  
 else 0 end) as P_INTERACTION_GEO_LATITUDE, 
(case  
 when (INTERACTION_GEO_LONGITUDE is not null) then 50  
 else 0 end) as P_INTERACTION_GEO_LONGITUDE, 
(case  
 when (TW_PLACE_FULL_NAME is not null) then 1  
 else 0 end) as P_TW_PLACE_FULL_NAME, 
(case  
 when (TW_RTED_PLACE_FULL_NAME is not null) then 1  
 else 0 end) as P_TW_RTED_PLACE_FULL_NAME, 
(case  
 when (TW_RTED_GEO_LATITUDE is not null) then 100  
 else 0 end) as P_TW_RTED_GEO_LATITUDE, 
(case  
 when (TW_RTED_GEO_LONGITUDE is not null) then 100  
 else 0 end) as P_TW_RTED_GEO_LONGITUDE, 
(case  
 when (TW_PLACE_ATT_ST_ADDRESS is not null) then 1  
 else 0 end) as P_TW_PLACE_ATT_ST_ADDRESS, 
(case  
 when (TW_RTED_PLACE_ATT_ST_ADDRESS is not null) then 1  
 else 0 end) as P_TW_RTED_PLACE_ATT_ST_ADDRESS, 
(case  
 when (TW_PLACE_ATT_LOCALITY is not null) then 1  
 else 0 end) as P_TW_PLACE_ATT_LOCALITY, 
(case  
 when (TW_PLACE_ATT_REGION is not null) then 1  
 else 0 end) as P_TW_PLACE_ATT_REGION, 
0 as P_TOTAL FROM INTERACTIONS 

17.  CREATE OR REPLACE VIEW  VW_INT_GEO_SCORING_TOTAL AS 
SELECT UUID,  
(P_TW_RT_USER_GEO_ENABLED+ 
P_TW_RTED_USER_GEO_ENABLED+ 
P_TW_RTED_USER_TIME_ZONE+ 
P_TW_RTED_USER_UTC_OFFSET+ 
P_TW_RTED_USER_LOCATION+ 
P_TW_RT_USER_LOCATION+ 
P_TW_USER_LOCATION+ 
P_TW_USER_TIME_ZONE+ 
P_TW_USER_UTC_OFFSET+ 
P_TW_RT_USER_TIME_ZONE+ 
P_TW_RT_USER_UTC_OFFSET+ 
P_INTERACTION_GEO_LATITUDE+ 
P_INTERACTION_GEO_LONGITUDE+ 
P_TW_PLACE_FULL_NAME+ 
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P_TW_RTED_PLACE_FULL_NAME+ 
P_TW_RTED_GEO_LATITUDE+ 
P_TW_RTED_GEO_LONGITUDE+ 
P_TW_PLACE_ATT_ST_ADDRESS+ 
P_TW_RTED_PLACE_ATT_ST_ADDRESS+ 
P_TW_PLACE_ATT_LOCALITY+ 
P_TW_PLACE_ATT_REGION+ 
0) as P_TOTAL FROM VW_INT_GEO_SCORING 

18.  SELECT MOST_FREQ_AUTHOR_P_TOTAL, COUNT(*) 
FROM  
 ( 
 SELECT 
   B.INTERACTION_AUTHOR_ID, 
   STATS_MODE(A.P_TOTAL) AS MOST_FREQ_AUTHOR_P_TOTAL 
 FROM  
   VW_INT_GEO_SCORING_TOTAL A,  
   INTERACTIONS B 
 WHERE  
   A.UUID = B.UUID 
 GROUP BY B.INTERACTION_AUTHOR_ID 
 ) 
GROUP BY MOST_FREQ_AUTHOR_P_TOTAL 
ORDER BY MOST_FREQ_AUTHOR_P_TOTAL 

19.  SELECT TW_USER_UTC_OFFSET, COUNT(*) 
FROM INTERACTIONS 
WHERE STREAM <> 'SCOT2014' -- FOR US2012 OR = TO GET 
SCOT2014 
GROUP BY TW_USER_UTC_OFFSET 
ORDER BY TW_USER_UTC_OFFSET 

20.  SELECT "GATEUS2012_JSON","TEXT","INTERACTION_ID","LOCTYPE" 
FROM GATE_NER_US2012 T, 
  JSON_TABLE 
  (T.GATEUS2012_JSON, '$' 
    COLUMNS ( 
            TEXT VARCHAR2(100) PATH '$.text', 
            INTERACTION_ID VARCHAR2(100) PATH '$.id_str', 
            NESTED PATH '$.entities.Location[*]' 
              COLUMNS ( 
                LOCTYPE VARCHAR2(100) PATH '$.locType' 
              ) 
            ) 
  ) D 
WHERE GATEUS2012_JSON IS JSON STRICT  
AND D.LOCTYPE IS NOT NULL 

21.  select b.*  
from interactions a, Gate_Ner_Us2012 b 
where a.interaction_id=b.GATEUS2012_JSON.id_str 
and a.interaction_id = '1e227914e2f4ac80e0740cf699462aae' 

22.  select 
  A.UUID, 
  COUNT(*) AS N_GATE_LOC_ENTITIES 
from 
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  INTERACTIONS A,  
  VW_GATE_NER_US2012_LOC B 
where 
  A.INTERACTION_ID = B.INTERACTION_ID 
group by A.UUID 

23.  insert 
  into alchemy_api (uuid, tranche, date_loaded) 
select 
  uuid, 
  'US2012_GEO Stream', 
  sysdate 
from interactions 
where stream = 'US2012_GEO' 

24.  insert 
  into alchemy_api (uuid, tranche, date_loaded) 
select 
  uuid, 
  'US2012_NON_GEO 1% sample tweets', 
  sysdate 
from interactions sample(1) 
where stream = 'US2012_NON_GEO' 
and tw_id is not null 

25.  insert 
  into alchemy_api (uuid, tranche, date_loaded) 
select 
  uuid, 
  'SCOT2014 geo-tagged tweets', 
  sysdate 
from interactions 
where stream = 'SCOT2014' 
and tw_id is not null 
and  
  (interaction_geo_latitude is not null  
  and  
  interaction_geo_latitude <> 0) 
and  
  (interaction_geo_longitude is not null  
  and  
  interaction_geo_longitude <> 0) 

26.  insert 
  into alchemy_api (uuid, tranche, date_loaded) 
select 
  uuid, 
  'SCOT2014 1% sample tweets', 
  sysdate 
from interactions sample(1) 
where stream = 'SCOT2014' 
and tw_id is not null 

27.  SELECT 
  TRANCHE, 
  COUNT(*) 
FROM VW_ALCHEMY_INTERACTIONS C 
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WHERE  
  ( C.TYPE IN  
    ('COUNTRY', 
    'CITY', 
    'STATEORCOUNTY', 
    'CONTINENT', 
    'GEOGRAPHICFEATURE', 
    'REGION')  
  OR  
    C.GEO IS NOT NULL ) 
GROUP BY TRANCHE 

28.  SELECT  
  CAST(A.UUID AS VARCHAR2(40)) AS UUID,  
  CAST(A.INTERACTION_CONTENT AS VARCHAR2(4000)) AS 
INT_CONTENT_4000, 
  TRUNC(A.INTERACTION_CREATED_AT) AS DATE_CREATED_AT, 
  JT.* 
FROM  
  INTERACTIONS A INNER JOIN GEO_CLAVIN_030_MINJSON_OUT B 
ON A.UUID = B.UUID, 
  JSON_TABLE(clavin_json, '$.resolvedLocationsMinimum[*]' 
  COLUMNS 
  (row_number FOR ORDINALITY, 
         GEONAMEID NUMBER(19,0) PATH '$.geonameID', 
         NAME VARCHAR2(200) PATH '$.name', 
         COUNTRYCODE VARCHAR2(2) PATH '$.countryCode', 
         LATITUDE NUMBER(19,8) PATH '$.latitude', 
         LONGITUDE NUMBER(19,8) PATH '$.longitude')) AS JT 
 

29.  CREATE TABLE LI_LINKS_URLS AS 
( 
SELECT  
  UUID, 
  STREAM, 
  STREAMID, 
  TRIM( 
    REGEXP_SUBSTR(   REPLACE( REPLACE( REPLACE( LINKS_URL, 
'[',''), ']',''), '"','')   , '[^,]+', 1, 
LEVELS.COLUMN_VALUE) 
  ) AS LINK_URL 
FROM  INTERACTIONS T , 
      TABLE(CAST(MULTISET( 
        SELECT LEVEL FROM DUAL  
        CONNECT BY LEVEL <= LENGTH 
(REGEXP_REPLACE(T.LINKS_URL, '[^,]+')) + 1 
      ) AS SYS.ODCINUMBERLIST)) LEVELS 
WHERE LINKS_URL IS NOT NULL 
) 

30.  SELECT  
  SUBSTR( (REPLACE(REPLACE(LINK_URL, 'http://', ''), 
'https://', '')), 1, INSTR( (REPLACE(REPLACE(LINK_URL, 
'http://', ''), 'https://', '')), '/', 1 )-1 ) AS DOMAIN, 
  COUNT(*) 
FROM LI_LINKS_URLS A, INTERACTIONS B 
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WHERE A.UUID = B.UUID 
AND LINK_URL IS NOT NULL 
AND SUBSTR( (REPLACE(REPLACE(LINK_URL, 'http://', ''), 
'https://', '')), 1, INSTR( (REPLACE(REPLACE(LINK_URL, 
'http://', ''), 'https://', '')), '/', 1 )-1 ) IS NOT NULL 
AND A.STREAM = 'SCOT2014' /* ALTER THIS <>/= TO GET 
US2012/SCOT2014 */ 
--AND (b.interaction_geo_latitude is null or 
b.tw_rted_geo_latitude is null) -- Get non-geographic 
posters (whether retweeted or not) 
AND (B.INTERACTION_GEO_LATITUDE IS NOT NULL OR 
B.TW_RTED_GEO_LATITUDE IS NOT NULL) -- Get geographic 
posters (whether rewtweeted or not) 
GROUP BY  
  SUBSTR( (REPLACE(REPLACE(LINK_URL, 'http://', ''), 
'https://', '')), 1, INSTR( (REPLACE(REPLACE(LINK_URL, 
'http://', ''), 'https://', '')), '/', 1 )-1 ) 
ORDER BY COUNT(*) DESC 

31.  CREATE TABLE LI_LINKS_URLS_DISTINCT AS 
(SELECT DISTINCT LINK_URL FROM LI_LINKS_URLS) 

32.  SELECT  
  T.LINK_URL,  
  SUBSTR(D.GEO, 1, INSTR(D.GEO,' ')-1) AS LAT,  
  SUBSTR(D.GEO, INSTR(D.GEO,' ')+1) AS LON, 
  D."URL", 
  D."LANG", 
  D."TYPE", 
  D."RELEVANCE", 
  D."COUNT", 
  D."TEXT", 
  D."GEO" 
FROM LI_LINKS_URLS_DISTINCT T, 
  json_table 
  (T.ENTITY_JSON, '$' 
    COLUMNS ( 
            url VARCHAR2(100) PATH '$.url', 
            lang VARCHAR2(20) PATH '$.language', 
            NESTED PATH '$.entities[*]' 
              COLUMNS ( 
                type VARCHAR2(100) PATH '$.type', 
                relevance NUMBER PATH '$.relevance', 
                count NUMBER PATH '$.count', 
                text VARCHAR2(100) PATH '$.text', 
                geo VARCHAR2(20) PATH 
'$.disambiguated.geo' 
              ) 
            ) 
  ) D 
WHERE ENTITY_JSON IS JSON STRICT 

33.  CREATE OR REPLACE VIEW VW_ALCHEMY_LINKS_N_INT AS 
SELECT 
  A.UUID,  
  COUNT(*) AS N_GEOMENTIONSINLINKS_INT 
FROM 
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  INTERACTIONS A, 
  LI_LINKS_URLS B, 
  VW_ALCHEMY_LINKS_URLS C, 
  VW_INT_GEO_SCORING_TOTAL D 
WHERE 
  A.UUID = B.UUID 
AND 
  B.LINK_URL = C.LINK_URL 
AND 
  A.UUID = D.UUID 
AND 
  ( C.TYPE IN  
    ('Country', 
    'City', 
    'StateOrCounty', 
    'Continent', 
    'GeographicFeature', 
    'Region')  
  OR  
    C.GEO IS NOT NULL ) 
GROUP BY A.UUID 

34.  CREATE OR REPLACE VIEW VW_ALCHEMY_LINKS_N_USR AS 
SELECT 
  A.INTERACTION_AUTHOR_ID,  
  COUNT(*) AS N_GEOMENTIONSINLINKS_USR 
FROM 
  INTERACTIONS A, 
  LI_LINKS_URLS B, 
  VW_ALCHEMY_LINKS_URLS C, 
  VW_INT_GEO_SCORING_TOTAL D 
WHERE 
  A.UUID = B.UUID 
AND 
  B.LINK_URL = C.LINK_URL 
AND 
  A.UUID = D.UUID 
AND 
  ( C.TYPE IN  
    ('Country', 
    'City', 
    'StateOrCounty', 
    'Continent', 
    'GeographicFeature', 
    'Region')  
  OR  
    C.GEO IS NOT NULL ) 
GROUP BY A.INTERACTION_AUTHOR_ID 

35.  SELECT  
  B.P_TOTAL, 
  AVG(A.N_GEOMENTIONSINLINKS_INT) AS 
AVG_GEOMENTIONSINLINKS_INT 
FROM 
  VW_ALCHEMY_LINKS_N_INT A, 
  VW_INT_GEO_SCORING_TOTAL B 
WHERE 



Geotagging matters? 

491 

 

  A.UUID = B.UUID 
GROUP BY B.P_TOTAL 

36.  SELECT  
  B.MOST_FREQ_AUTHOR_P_TOTAL AS P_TOTAL, 
  AVG(A.N_GEOMENTIONSINLINKS_USR) AS 
AVG_GEOMENTIONSINLINKS_USR 
FROM 
  VW_ALCHEMY_LINKS_N_USR A, 
  VW_USER_GEO_SCORING_MOSTFREQ B 
WHERE 
  A.INTERACTION_AUTHOR_ID = B.INTERACTION_AUTHOR_ID 
GROUP BY B.MOST_FREQ_AUTHOR_P_TOTAL 

37.  CREATE OR REPLACE VIEW VW_STATS_GT_US_I_TW_NOTGEO AS 
SELECT 
  A.UUID, 
  A.N_GATE_LOC_ENTITIES AS NUMB 
FROM 
  VW_GATE_NER_US2012_LOC_N_INT A, 
  INTERACTIONS B 
WHERE 
  A.UUID = B.UUID 
AND 
  ((B.TW_RT_ID IS NULL OR B.TW_RT_ID = '') AND (B.TW_ID IS 
NOT NULL)) 
AND 
  B.INTERACTION_GEO_LATITUDE IS NULL 

38.  SELECT STREAM, COUNT(*) 
FROM INTERACTIONS 
WHERE LOWER(INTERACTION_CONTENT) LIKE ‘%perth%’ 
GROUP BY STREAM 

39.  SELECT  
  COUNT(*) 
FROM INTERACTIONS 
WHERE  
  TW_ID IN (SELECT TW_RTED_ID FROM INTERACTIONS) 

40.  SELECT  
  COUNT(*) 
FROM INTERACTIONS 
WHERE  
  TW_RTED_GEO_LATITUDE IS NOT NULL 

41.  SELECT 
  COUNT(*) 
FROM 
  INTERACTIONS A, 
  INT_TW_RTED_GEO_NONNULL B 
WHERE 
  A.TW_ID = B.TW_RTED_ID 

42.  SELECT 
  COUNT(*) 
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FROM 
  INTERACTIONS A, 
  INT_TW_RTED_GEO_NONNULL B 
WHERE 
  A.TW_ID = B.TW_RTED_ID 
AND 
  A.INTERACTION_GEO_LATITUDE <> B.TW_RTED_GEO_LATITUDE 

43.  SELECT COUNT(*) FROM 
( 
SELECT 
  DISTINCT(A.TW_ID) 
FROM 
  INTERACTIONS A, 
  INT_TW_RTED_GEO_NONNULL B 
WHERE 
  A.TW_ID = B.TW_RTED_ID 
AND 
  A.INTERACTION_GEO_LATITUDE <> B.TW_RTED_GEO_LATITUDE 
)   

44.  SELECT  
  INTERACTION_AUTHOR_NAME,  
  ROUND(AVG(TW_USER_FOLLOWERS_COUNT)) 
FROM INTERACTIONS  
WHERE STREAM <> 'SCOT2014' 
GROUP BY INTERACTION_AUTHOR_NAME 
HAVING AVG(TW_USER_FOLLOWERS_COUNT) > 1000000 
ORDER BY AVG(TW_USER_FOLLOWERS_COUNT) DESC 

45.  SELECT  
  INTERACTION_AUTHOR_NAME,  
  ROUND(AVG(TW_USER_FOLLOWERS_COUNT)) 
FROM INTERACTIONS  
WHERE STREAM <> 'SCOT2014' 
AND INTERACTION_GEO_LATITUDE IS NOT NULL 
GROUP BY INTERACTION_AUTHOR_NAME 
HAVING AVG(TW_USER_FOLLOWERS_COUNT) > 1000000 
ORDER BY AVG(TW_USER_FOLLOWERS_COUNT) DESC 
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Appendix 12 STATISTICAL ANALYSIS IN R 

A12.1 R scripts 

Several scripts written in R (The R Foundation, 2018) have been used to test the 

statistical significance of results reported in this thesis. 

These R scripts, referenced in the text by the item number adjacent to each script, 

are shown below. 

Item R script 
1.  # Read CSV into R 

MyData <- 
read.csv('~/Desktop/R_STATS/VW_USER_COUNT_INTS_SRC_TYP_GEO
.CSV', header=TRUE, sep=',') 
 
# normal summary 
summary(MyData$N) 
 
# by the combinations 
s_all <- MyData [which (MyData$COLDESC == 'ALL'),] 
s_us2012 <- MyData [which (MyData$COLDESC == 'US2012'),] 
s_us2012_geo <- MyData [which (MyData$COLDESC == 
'US2012_GEO'),] 
s_us2012_non_geo <- MyData [which (MyData$COLDESC == 
'US2012_NON_GEO'),] 
s_us2012_non_geo_hisp <- MyData [which (MyData$COLDESC == 
'US2012_NON_GEO_HISP'),] 
s_scot2014 <- MyData [which (MyData$COLDESC == 
'SCOT2014'),] 
s_fb_all <- MyData [which (MyData$COLDESC == 'FB - ALL'),] 
s_tw_all <- MyData [which (MyData$COLDESC == 'TW - ALL'),] 
s_rt_all <- MyData [which (MyData$COLDESC == 'RT - ALL'),] 
s_fb_geo <- MyData [which (MyData$COLDESC == 'FB - GEO'),] 
s_tw_geo <- MyData [which (MyData$COLDESC == 'TW - GEO'),] 
s_rt_geo <- MyData [which (MyData$COLDESC == 'RT - GEO'),] 
 
# PACKAGE from https://cran.r-
project.org/web/packages/psych/index.html 
library(psych) 
describe(s_all$N) 
describe(s_us2012$N) 
describe(s_scot2014$N) 
describe(s_fb_all$N) 
describe(s_tw_all$N) 
describe(s_rt_all$N) 
describe(s_fb_geo$N) 
describe(s_tw_geo$N) 
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describe(s_rt_geo$N) 

2.  #### compute psych descriptive statistics #### 
 
# set working directory 
setwd('/media/sf_R_DATA/FOR_T_TESTS') 
 
#my_files <- Sys.glob("*GT*US*_I_*.CSV") # to get only GT 
etc. 
my_files <- list.files(pattern = "\\.CSV$") # to get all 
files into a list 
 
# read the files 
my_data <- lapply(my_files, read.csv) 
 
# names the files 
names(my_data) <- gsub("\\.CSV$", "", my_files) 
 
# what have we go 
names(my_data) 
lapply(my_data, head) 
 
# vector of col name I want to extract 
my_col = c("NUMB") 
# get at that column for each list element (ie file read 
in) 
my_col_numb = lapply(my_data, "[", , my_col) 
# output it for each list element 
lapply(my_col_numb, head) 
 
# calculate means for each list element 
my_means <- lapply(my_col_numb, mean) 
my_means 
####boxplot(my_col_numb) # kills R 
 
# psych 
library(psych) 
my_describes <- lapply(my_col_numb, describe) # run 
describe on NUMB in each file 
my_describes 
 
# what have we got 
names(my_describes) 
 
# store results in a data frame 
my_describes_df <- data.frame(t(sapply(my_describes,c))) 
 
# save output 
my_describes_df_char <- 
apply(my_describes_df,2,as.character) 
write.csv(my_describes_df_char, 
file='output/all_psych_describe_output.csv') 
#### the above works but it's easiest to copy/paste 
results from data frame viewer into LibreOffice 

3.  #### R SCRIPT DRIVEN FROM 002 - Excel control for t-
tests.xlsx #### 
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# set working directory 
setwd('/media/sf_R_DATA/FOR_T_TESTS') 
 
# empty list to store t test output in 
outlist <- list() 
 
# read CSV files into R; this is driven by the spreadsheet 
to match like with like 
VW_STATS_GT_SC_I_FB_ISGEO <- 
read.csv('VW_STATS_GT_SC_I_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_GT_SC_I_FB_NOTGEO <- 
read.csv('VW_STATS_GT_SC_I_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_GT_SC_I_FB_NOTGEO$NUMB,VW_STATS_GT_SC
_I_FB_ISGEO$NUMB))) 
VW_STATS_GT_SC_I_RT_ISGEO <- 
read.csv('VW_STATS_GT_SC_I_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_GT_SC_I_RT_NOTGEO <- 
read.csv('VW_STATS_GT_SC_I_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_GT_SC_I_RT_NOTGEO$NUMB,VW_STATS_GT_SC
_I_RT_ISGEO$NUMB))) 
VW_STATS_GT_SC_I_TW_ISGEO <- 
read.csv('VW_STATS_GT_SC_I_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_GT_SC_I_TW_NOTGEO <- 
read.csv('VW_STATS_GT_SC_I_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_GT_SC_I_TW_NOTGEO$NUMB,VW_STATS_GT_SC
_I_TW_ISGEO$NUMB))) 
VW_STATS_GT_SC_U_FB_ISGEO <- 
read.csv('VW_STATS_GT_SC_U_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_GT_SC_U_FB_NOTGEO <- 
read.csv('VW_STATS_GT_SC_U_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_GT_SC_U_FB_NOTGEO$NUMB,VW_STATS_GT_SC
_U_FB_ISGEO$NUMB))) 
VW_STATS_GT_SC_U_RT_ISGEO <- 
read.csv('VW_STATS_GT_SC_U_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_GT_SC_U_RT_NOTGEO <- 
read.csv('VW_STATS_GT_SC_U_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_GT_SC_U_RT_NOTGEO$NUMB,VW_STATS_GT_SC
_U_RT_ISGEO$NUMB))) 
VW_STATS_GT_SC_U_TW_ISGEO <- 
read.csv('VW_STATS_GT_SC_U_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
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VW_STATS_GT_SC_U_TW_NOTGEO <- 
read.csv('VW_STATS_GT_SC_U_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_GT_SC_U_TW_NOTGEO$NUMB,VW_STATS_GT_SC
_U_TW_ISGEO$NUMB))) 
VW_STATS_GT_US_I_FB_ISGEO <- 
read.csv('VW_STATS_GT_US_I_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_GT_US_I_FB_NOTGEO <- 
read.csv('VW_STATS_GT_US_I_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_GT_US_I_FB_NOTGEO$NUMB,VW_STATS_GT_US
_I_FB_ISGEO$NUMB))) 
VW_STATS_GT_US_I_RT_ISGEO <- 
read.csv('VW_STATS_GT_US_I_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_GT_US_I_RT_NOTGEO <- 
read.csv('VW_STATS_GT_US_I_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_GT_US_I_RT_NOTGEO$NUMB,VW_STATS_GT_US
_I_RT_ISGEO$NUMB))) 
VW_STATS_GT_US_I_TW_ISGEO <- 
read.csv('VW_STATS_GT_US_I_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_GT_US_I_TW_NOTGEO <- 
read.csv('VW_STATS_GT_US_I_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_GT_US_I_TW_NOTGEO$NUMB,VW_STATS_GT_US
_I_TW_ISGEO$NUMB))) 
VW_STATS_GT_US_U_FB_ISGEO <- 
read.csv('VW_STATS_GT_US_U_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_GT_US_U_FB_NOTGEO <- 
read.csv('VW_STATS_GT_US_U_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_GT_US_U_FB_NOTGEO$NUMB,VW_STATS_GT_US
_U_FB_ISGEO$NUMB))) 
VW_STATS_GT_US_U_RT_ISGEO <- 
read.csv('VW_STATS_GT_US_U_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_GT_US_U_RT_NOTGEO <- 
read.csv('VW_STATS_GT_US_U_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_GT_US_U_RT_NOTGEO$NUMB,VW_STATS_GT_US
_U_RT_ISGEO$NUMB))) 
VW_STATS_GT_US_U_TW_ISGEO <- 
read.csv('VW_STATS_GT_US_U_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_GT_US_U_TW_NOTGEO <- 
read.csv('VW_STATS_GT_US_U_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
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outlist <- append(outlist, 
list(t.test(VW_STATS_GT_US_U_TW_NOTGEO$NUMB,VW_STATS_GT_US
_U_TW_ISGEO$NUMB))) 
 
VW_STATS_CL_SC_I_FB_ISGEO <- 
read.csv('VW_STATS_CL_SC_I_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_SC_I_FB_NOTGEO <- 
read.csv('VW_STATS_CL_SC_I_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_CL_SC_I_FB_NOTGEO$NUMB,VW_STATS_CL_SC
_I_FB_ISGEO$NUMB))) 
VW_STATS_CL_SC_I_RT_ISGEO <- 
read.csv('VW_STATS_CL_SC_I_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_SC_I_RT_NOTGEO <- 
read.csv('VW_STATS_CL_SC_I_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_CL_SC_I_RT_NOTGEO$NUMB,VW_STATS_CL_SC
_I_RT_ISGEO$NUMB))) 
VW_STATS_CL_SC_I_TW_ISGEO <- 
read.csv('VW_STATS_CL_SC_I_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_SC_I_TW_NOTGEO <- 
read.csv('VW_STATS_CL_SC_I_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_CL_SC_I_TW_NOTGEO$NUMB,VW_STATS_CL_SC
_I_TW_ISGEO$NUMB))) 
VW_STATS_CL_SC_U_FB_ISGEO <- 
read.csv('VW_STATS_CL_SC_U_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_SC_U_FB_NOTGEO <- 
read.csv('VW_STATS_CL_SC_U_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_CL_SC_U_FB_NOTGEO$NUMB,VW_STATS_CL_SC
_U_FB_ISGEO$NUMB))) 
VW_STATS_CL_SC_U_RT_ISGEO <- 
read.csv('VW_STATS_CL_SC_U_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_SC_U_RT_NOTGEO <- 
read.csv('VW_STATS_CL_SC_U_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_CL_SC_U_RT_NOTGEO$NUMB,VW_STATS_CL_SC
_U_RT_ISGEO$NUMB))) 
VW_STATS_CL_SC_U_TW_ISGEO <- 
read.csv('VW_STATS_CL_SC_U_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_SC_U_TW_NOTGEO <- 
read.csv('VW_STATS_CL_SC_U_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
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outlist <- append(outlist, 
list(t.test(VW_STATS_CL_SC_U_TW_NOTGEO$NUMB,VW_STATS_CL_SC
_U_TW_ISGEO$NUMB))) 
VW_STATS_CL_US_I_FB_ISGEO <- 
read.csv('VW_STATS_CL_US_I_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_US_I_FB_NOTGEO <- 
read.csv('VW_STATS_CL_US_I_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_CL_US_I_FB_NOTGEO$NUMB,VW_STATS_CL_US
_I_FB_ISGEO$NUMB))) 
VW_STATS_CL_US_I_RT_ISGEO <- 
read.csv('VW_STATS_CL_US_I_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_US_I_RT_NOTGEO <- 
read.csv('VW_STATS_CL_US_I_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_CL_US_I_RT_NOTGEO$NUMB,VW_STATS_CL_US
_I_RT_ISGEO$NUMB))) 
VW_STATS_CL_US_I_TW_ISGEO <- 
read.csv('VW_STATS_CL_US_I_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_US_I_TW_NOTGEO <- 
read.csv('VW_STATS_CL_US_I_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_CL_US_I_TW_NOTGEO$NUMB,VW_STATS_CL_US
_I_TW_ISGEO$NUMB))) 
VW_STATS_CL_US_U_FB_ISGEO <- 
read.csv('VW_STATS_CL_US_U_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_US_U_FB_NOTGEO <- 
read.csv('VW_STATS_CL_US_U_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_CL_US_U_FB_NOTGEO$NUMB,VW_STATS_CL_US
_U_FB_ISGEO$NUMB))) 
VW_STATS_CL_US_U_RT_ISGEO <- 
read.csv('VW_STATS_CL_US_U_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_US_U_RT_NOTGEO <- 
read.csv('VW_STATS_CL_US_U_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_CL_US_U_RT_NOTGEO$NUMB,VW_STATS_CL_US
_U_RT_ISGEO$NUMB))) 
VW_STATS_CL_US_U_TW_ISGEO <- 
read.csv('VW_STATS_CL_US_U_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_CL_US_U_TW_NOTGEO <- 
read.csv('VW_STATS_CL_US_U_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_CL_US_U_TW_NOTGEO$NUMB,VW_STATS_CL_US
_U_TW_ISGEO$NUMB))) 
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VW_STATS_AL_SC_I_TR2_ISGEO <- 
read.csv('VW_STATS_AL_SC_I_TR2_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_AL_SC_I_TR2_NOTGEO <- 
read.csv('VW_STATS_AL_SC_I_TR2_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_AL_SC_I_TR2_NOTGEO$NUMB,VW_STATS_AL_S
C_I_TR2_ISGEO$NUMB))) 
VW_STATS_AL_SC_U_TR2_ISGEO <- 
read.csv('VW_STATS_AL_SC_U_TR2_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_AL_SC_U_TR2_NOTGEO <- 
read.csv('VW_STATS_AL_SC_U_TR2_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_AL_SC_U_TR2_NOTGEO$NUMB,VW_STATS_AL_S
C_U_TR2_ISGEO$NUMB))) 
VW_STATS_AL_US_I_TR1_ISGEO <- 
read.csv('VW_STATS_AL_US_I_TR1_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_AL_US_I_TR1_NOTGEO <- 
read.csv('VW_STATS_AL_US_I_TR1_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_AL_US_I_TR1_NOTGEO$NUMB,VW_STATS_AL_U
S_I_TR1_ISGEO$NUMB))) 
VW_STATS_AL_US_U_TR1_ISGEO <- 
read.csv('VW_STATS_AL_US_U_TR1_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_AL_US_U_TR1_NOTGEO <- 
read.csv('VW_STATS_AL_US_U_TR1_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_AL_US_U_TR1_NOTGEO$NUMB,VW_STATS_AL_U
S_U_TR1_ISGEO$NUMB))) 
 
VW_STATS_LI_SC_I_FB_ISGEO <- 
read.csv('VW_STATS_LI_SC_I_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_LI_SC_I_FB_NOTGEO <- 
read.csv('VW_STATS_LI_SC_I_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_SC_I_FB_NOTGEO$NUMB,VW_STATS_LI_SC
_I_FB_ISGEO$NUMB))) 
VW_STATS_LI_SC_I_RT_ISGEO <- 
read.csv('VW_STATS_LI_SC_I_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_LI_SC_I_RT_NOTGEO <- 
read.csv('VW_STATS_LI_SC_I_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_SC_I_RT_NOTGEO$NUMB,VW_STATS_LI_SC
_I_RT_ISGEO$NUMB))) 
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VW_STATS_LI_SC_I_TW_ISGEO <- 
read.csv('VW_STATS_LI_SC_I_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_LI_SC_I_TW_NOTGEO <- 
read.csv('VW_STATS_LI_SC_I_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_SC_I_TW_NOTGEO$NUMB,VW_STATS_LI_SC
_I_TW_ISGEO$NUMB))) 
VW_STATS_LI_SC_U_FB_ISGEO <- 
read.csv('VW_STATS_LI_SC_U_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_LI_SC_U_FB_NOTGEO <- 
read.csv('VW_STATS_LI_SC_U_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_SC_U_FB_NOTGEO$NUMB,VW_STATS_LI_SC
_U_FB_ISGEO$NUMB))) 
VW_STATS_LI_SC_U_RT_ISGEO <- 
read.csv('VW_STATS_LI_SC_U_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_LI_SC_U_RT_NOTGEO <- 
read.csv('VW_STATS_LI_SC_U_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_SC_U_RT_NOTGEO$NUMB,VW_STATS_LI_SC
_U_RT_ISGEO$NUMB))) 
VW_STATS_LI_SC_U_TW_ISGEO <- 
read.csv('VW_STATS_LI_SC_U_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_LI_SC_U_TW_NOTGEO <- 
read.csv('VW_STATS_LI_SC_U_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_SC_U_TW_NOTGEO$NUMB,VW_STATS_LI_SC
_U_TW_ISGEO$NUMB))) 
VW_STATS_LI_US_I_FB_ISGEO <- 
read.csv('VW_STATS_LI_US_I_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_LI_US_I_FB_NOTGEO <- 
read.csv('VW_STATS_LI_US_I_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_US_I_FB_NOTGEO$NUMB,VW_STATS_LI_US
_I_FB_ISGEO$NUMB))) 
VW_STATS_LI_US_I_RT_ISGEO <- 
read.csv('VW_STATS_LI_US_I_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_LI_US_I_RT_NOTGEO <- 
read.csv('VW_STATS_LI_US_I_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_US_I_RT_NOTGEO$NUMB,VW_STATS_LI_US
_I_RT_ISGEO$NUMB))) 
VW_STATS_LI_US_I_TW_ISGEO <- 
read.csv('VW_STATS_LI_US_I_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
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VW_STATS_LI_US_I_TW_NOTGEO <- 
read.csv('VW_STATS_LI_US_I_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_US_I_TW_NOTGEO$NUMB,VW_STATS_LI_US
_I_TW_ISGEO$NUMB))) 
VW_STATS_LI_US_U_FB_ISGEO <- 
read.csv('VW_STATS_LI_US_U_FB_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_LI_US_U_FB_NOTGEO <- 
read.csv('VW_STATS_LI_US_U_FB_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_US_U_FB_NOTGEO$NUMB,VW_STATS_LI_US
_U_FB_ISGEO$NUMB))) 
VW_STATS_LI_US_U_RT_ISGEO <- 
read.csv('VW_STATS_LI_US_U_RT_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_LI_US_U_RT_NOTGEO <- 
read.csv('VW_STATS_LI_US_U_RT_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_US_U_RT_NOTGEO$NUMB,VW_STATS_LI_US
_U_RT_ISGEO$NUMB))) 
VW_STATS_LI_US_U_TW_ISGEO <- 
read.csv('VW_STATS_LI_US_U_TW_ISGEO.CSV', header=TRUE, 
sep=',') 
VW_STATS_LI_US_U_TW_NOTGEO <- 
read.csv('VW_STATS_LI_US_U_TW_NOTGEO.CSV', header=TRUE, 
sep=',') 
outlist <- append(outlist, 
list(t.test(VW_STATS_LI_US_U_TW_NOTGEO$NUMB,VW_STATS_LI_US
_U_TW_ISGEO$NUMB))) 
 
# TURN APPENDED LIST INTO A DATA FRAME 
my_outlist_df <- data.frame(t(sapply(outlist,c))) 
 
# SAVE OUTPUT 
my_outlist_df_char <- apply(my_outlist_df,2,as.character) 
write.csv(my_outlist_df_char, 
file='output/all_t_test_X_NOTGEO_Y_ISGEO.csv') 
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A12.2 Detailed statistical results and commentary 

The following pages present detailed results of statistical tests comparing numbers 

of NLP-detectable toponymic place names found at interaction and user levels in 

the varying sources and subtypes of social media data collected during the two case 

study events examined in this research (Section 4.2.4, p126). Results based upon 

statistical and other analyses, derived by text-mining social media data using three 

NLP systems described in Section 4.4.1 (p147), are presented throughout Chapter 5 

(p186) with summary statistics given in Section 5.3 (p219). 

Multiple levels of statistical analysis are reported in detail in the tables which 

follow, as illustrated graphically in Figure A12-1.  

Event Level Geotagged Source/Subtype 

US2012 
/ 

SCOT2014 

Interaction 

Yes 
FB 
TW 
RT 

No 
FB 
TW 
RT 

User 

Yes 
FB 
TW 
RT 

No 
FB 
TW 
RT 

Figure A12-1 – Hierarchical levels for statistical analysis of toponymic place name detection 
in case study social media data 

In each case statistics are presented for TwitIE on GATEcloud (GT), AlchemyAPI (AL 

against message text; LI against links) and CLAVIN-rest (CL). Statistics report T and 

P scores for numbers of NLP-detectable toponymic mentions in Facebook (FB), 

Twitter tweet (TW) and retweet (RT) message text or linked/shared URL content, 

whether coordinate-geotagged (GEO=Y) or not (GEO=N). Descriptive statistics, at 

interaction and user levels respectively, for the US2012 event are shown in Table 
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A12-1 (p504) and Table A12-2 (p505). Similar tables for the SCOT2014 event are 

shown in Table A12-3 (p506) and Table A12-4 (p507). In each case tables show 

NLP/geoparser used, OSN source (src), coordinate-geotagged status (geo) together 

with numbers of records (n), mean, standard deviation (sd), median, trimmed 

mean, median absolute deviation (mad), minimum (min), maximum (max), range, 

skew, kurtosis and standard error (se) calculated using  R’s psych package 

(Revelle, 2018). Table A12-5 (p508) and Table A12-6 (p509) show T statistics and P 

values computed for US2012 and SCOT2014 events by geoparser, OSN source, 

level (I=interaction, U=user) and is/is-not coordinate-geotagged permutations. 
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Table A12-1 – US2012 geoparsing descriptive statistics (interaction level) 

 

nl
p 

sr
c 

ge
o 

n 
m

ea
n 

sd
 

m
ed

ia
n 

tr
im

m
ed

 
m

ad
 

m
in

 
m

ax
 

ra
ng

e 
sk

ew
 

ku
rt

os
is

 
se

 

G
T 

FB
 

Y 
0 

N
aN

 
N

A 
N

A 
N

aN
 

N
A 

In
f 

-In
f 

-In
f 

N
A 

N
A 

N
A 

G
T 

FB
 

N
 

13
,3

41
 

1.
90

 
2.

79
 

1 
1.

39
 

0.
00

 
1 

16
1 

16
0 

19
.0

1 
84

7.
07

 
0.

02
 

G
T 

TW
 

Y 
21

,4
55

 
1.

41
 

0.
82

 
1 

1.
25

 
0.

00
 

1 
20

 
19

 
4.

17
 

40
.6

6 
0.

01
 

G
T 

TW
 

N
 

10
4,

30
3 

1.
22

 
0.

57
 

1 
1.

09
 

0.
00

 
1 

14
 

13
 

3.
92

 
25

.4
0 

0.
00

 

G
T 

RT
 

Y 
1,

10
3 

1.
20

 
0.

53
 

1 
1.

07
 

0.
00

 
1 

6 
5 

3.
40

 
14

.5
7 

0.
02

 

G
T 

RT
 

N
 

12
4,

89
2 

1.
21

 
0.

54
 

1 
1.

08
 

0.
00

 
1 

14
 

13
 

4.
19

 
30

.3
5 

0.
00

 

AL
 

TW
 

Y 
18

,3
21

 
1.

17
 

0.
52

 
1 

1.
05

 
0.

00
 

1 
10

 
9 

4.
67

 
35

.0
6 

0.
00

 

AL
 

TW
 

N
 

2,
23

1 
1.

16
 

0.
45

 
1 

1.
05

 
0.

00
 

1 
5 

4 
3.

36
 

14
.8

0 
0.

01
 

CL
 

FB
 

Y 
0 

N
aN

 
N

A 
N

A 
N

aN
 

N
A 

In
f 

-In
f 

-In
f 

N
A 

N
A 

N
A 

CL
 

FB
 

N
 

12
,1

99
 

1.
80

 
2.

42
 

1 
1.

37
 

0.
00

 
1 

15
9 

15
8 

26
.0

8 
1,

49
5.

61
 

0.
02

 

CL
 

TW
 

Y 
16

,9
58

 
1.

17
 

0.
49

 
1 

1.
05

 
0.

00
 

1 
9 

8 
4.

49
 

34
.8

1 
0.

00
 

CL
 

TW
 

N
 

84
,7

06
 

1.
19

 
0.

51
 

1 
1.

06
 

0.
00

 
1 

9 
8 

3.
87

 
23

.6
1 

0.
00

 

CL
 

RT
 

Y 
89

5 
1.

14
 

0.
44

 
1 

1.
02

 
0.

00
 

1 
7 

6 
4.

89
 

40
.1

8 
0.

01
 

CL
 

RT
 

N
 

10
0,

70
4 

1.
18

 
0.

51
 

1 
1.

06
 

0.
00

 
1 

10
 

9 
4.

59
 

35
.0

9 
0.

00
 

LI
 

FB
 

Y 
0 

N
aN

 
N

A 
N

A 
N

aN
 

N
A 

In
f 

-In
f 

-In
f 

N
A 

N
A 

N
A 

LI
 

FB
 

N
 

12
,5

54
 

4.
97

 
4.

25
 

4 
4.

31
 

2.
97

 
1 

50
 

49
 

1.
99

 
8.

36
 

0.
04

 

LI
 

TW
 

Y 
6,

63
7 

5.
58

 
5.

37
 

4 
4.

60
 

4.
45

 
1 

51
 

50
 

2.
11

 
6.

81
 

0.
07

 

LI
 

TW
 

N
 

95
,8

12
 

5.
66

 
5.

15
 

4 
4.

80
 

4.
45

 
1 

54
 

53
 

1.
90

 
5.

74
 

0.
02

 

LI
 

RT
 

Y 
39

3 
4.

99
 

4.
32

 
4 

4.
29

 
4.

45
 

1 
24

 
23

 
1.

41
 

1.
93

 
0.

22
 

LI
 

RT
 

N
 

92
,2

25
 

5.
48

 
5.

10
 

4 
4.

59
 

4.
45

 
1 

53
 

52
 

2.
09

 
6.

82
 

0.
02

 

 



Geotagging matters? 

505 

 

Table A12-2 – US2012 geoparsing descriptive statistics (user level) 
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Table A12-3 – SCOT2014 geoparsing descriptive statistics (interaction level) 
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Table A12-4 – SCOT2014 geoparsing descriptive statistics (user level) 
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Table A12-5 – US2012 geoparsing T-test results (x=NOTGEO, y=ISGEO) at interaction and 
user levels 
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Table A12-6 – SCOT2014 geoparsing T-test results (x=NOTGEO, y=ISGEO) at interaction and 
user levels 
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Descriptive statistics for geoparsing operations (Section 5.2, p188) against US2012 

OSN message text and linked/shared URL content are given in Table A12-1 and 

Table A12-2. The statistics show that: 

• At interaction level (Table A12-1, p504): 

o The two geoparsers (GT=GATEcloud TwitIE, CL=CLAVIN-rest) run 

against all three sources of OSN message text (FB=Facebook, 

TW=Twitter tweets, RT=Twitter retweets) and AlchemyAPI (AL), run 

against samples of coordinate-geotagged (GEO=Y) and non-

coordinate-geotagged (GEO=N) TW message text, all report similar 

median numbers of 1 detected toponymic mention/interaction. 

There is, however, considerable variability in numbers of NLP-

detected toponymic mentions with a maximum of 161 

mentions/interaction detected by GT in non-coordinate-geotagged 

FB message text, corresponding well with a similar maximum 

number of 159 geo-entities detected in the same source by CL. This 

FB post (UUID= D827A23004B04B26AC44893AE63627C6) starts 

‘What's on your mind? What's on your mind?’ before mentioning the 

Libyan city of Benghazi 161 times (cf. Figure 5-9, p216). Skewness in 

toponymic mentions/interaction is low in TW and RT message text, 

whether coordinate-geotagged or not, and higher in FB text. 

o AlchemyAPI, run against linked/shared URL content (LI), detects a 

median number of 4 toponymic mentions/URL at interaction level, 

rising to a maximum of 54 mentions/URL for a link shared in a non-

coordinate-geotagged TW interaction. 

o Three of the permutations tested at interaction level for both events 

are not present in the US2012 data set; there are no coordinate-

geotagged Facebook records in the US2012 Streams (Table 4-8, 

p170) and, hence, R is unable to calculate descriptive statistics for 

GT/FB, CL/FB and LI/FB where GEO=Y. As there are no records 
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for these three permutations two-sided T-tests comparing the results 

of geoparsing operations for non-coordinate and coordinate-

geotagged FB message text cannot be computed (below). 

• At user level (Table A12-2, p505): 

o Median numbers of NLP-detectable toponymic mentions/user for 

GT, AL and CL geoparsers are in the range 1-2, with a maximum 

number of 306 detectable toponymic mentions for one user making 

non-coordinate-geotagged TW interactions. This maximum is lower 

than the maximums for SCOT2014 data at user level (below) where 

the data set contains many more records (n=6,477,713 vs. 

1,718,667) and correspondingly larger numbers of interactions/user. 

o AlchemyAPI, run against linked/shared URL content (LI), detects 

variable mean numbers of toponymic mentions for all of the URLs 

shared by users, with higher means ranging 14-20/user for TW and 

RT data and a lower mean of 5 for non-coordinate-geotagged FB 

data, of which there are comparatively few records (n=57,265; 

3.33%) in the US2012 data set. 

o The lack of coordinate-geotagged Facebook data in the US2012 

data set is again highlighted by three permutations at user level 

(GT-CL-LI/FB where GEO=Y) with a 0 record count. As noted 

above, 0-record counts for one side of a two-sided T-test will not 

compute in R, although distributions clearly differ. 

Descriptive statistics for geoparsing operations (Section 5.2, p188) against 

SCOT2014 OSN message text and linked/shared URL content are given in Table 

A12-3 and Table A12-4. The statistics show that: 

• At interaction level (Table A12-3, p506): 

o Median numbers of toponymic entities detected/interaction in 

message text range from 1-2 depending upon NLP/geoparser and 
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OSN source. Maximum numbers are higher than for the US2012 

data set and 706 geo-entities have been detected in one non-

coordinate-geotagged FB post. This Facebook post (UUID= 

5ABAB239EC7B4B5CB42EFC0666087EDD) contains a long list of 

parliamentarian’s names and email addresses, many ending 

@parliament.uk, coded as a country (‘UK’) by TwitIE on GATEcloud.  

o AlchemyAPI, run against linked/shared URL content (LI), detects 

higher median numbers of toponymic mentions ranging from 2-7 

with a maximum of 374 geo-entities detected in 40 linked URLs 

shared from one non-coordinate-geotagged FB post (UUID= 

731E8FA2DDC74170AEB08BA6ACFEEB04). These URLs, from a range 

of news or comment sites including bbc.com, bloomberg.com, 

informationclearinghouse.com and reuters.com amongst others, 

contain many toponymic mentions in HTML content. 

o All of the permutations of geoparser and OSN source, at both levels, 

whether coordinate-geotagged or not, have non-0 record counts 

allowing for calculation of paired T-tests for all like-for-like 

NLP/GEO=N/GEO=Y permutations using R (below). 

• At user level (Table A12-4, p507): 

o Median numbers of toponymic entities detected in message text by 

GT, AL and CL range from 1-48/user, reflecting larger numbers of 

interactions/user (albeit with significant skewness, Section 4.6.1, 

p164) recorded in the SCOT2014 data set, sampled using one long-

running Stream (Appendix A7.3, p435). 

o In linked/shared content median numbers of detected geo-entities 

are higher, with maximums significantly higher, reflecting larger 

numbers of links shared by repeatedly observed users in this data set 

(Table 5-6, p207) which, as noted above, was recorded over a much 

longer time-period than the 1:5 or 1:50 sampled US2012 data set, 
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using just one DataSift Stream, that was bound to record more 

linked/shared URLs per user. 

Welch Two Sample T-tests, calculated in R (Spector, 2018), compare distributions of 

numbers of NLP-detected toponymic mentions per interaction, or per user, for non-

coordinate-geotagged (x variable) and coordinate-geotagged (y variable) 

interactions or users. These are shown above in Table A12-5 (US2012) and Table 

A12-6 (SCOT2014). 

In the US2012 event (Table A12-5, p508): 

• In 9 out of 20 cases like-for-like comparisons of geoparser, OSN source and 

level for non-coordinate-geotagged message text or linked/shared URL 

content against coordinate-geotagged corollaries are statistically significant 

with >95% confidence. The null hypothesis, that there is no difference in the 

distribution of numbers of toponymic mentions detected in OSN message 

text or linked/shared URL content by OSN source for the given 

NLP/geoparsers for GEO=N and GEO=Y at interaction and user levels, can 

be rejected. In most (n=6) of these statistically significant comparisons non-

coordinate-geotagged interactions or non-coordinate-geotagging users, 

mean(x) in Table A12-5, make more NLP/geoparser-detectable toponymic 

mentions in message text, or link to and share URLs having more detectable 

toponymic mentions in content, than their coordinate-geotagged or 

geotagging, mean(y), corollaries. 

• Statistics for 6 cases (FB message text parsed by GT and CL and 

linked/shared URL content parsed by AlchemyAPI LI at interaction and user 

levels) cannot be calculated in R for the US2012 data set as no coordinate-

geotagged Facebook interactions are present. While this prevents execution 

of a two-sided T-test of GEO=N against GEO=Y, like-for-like distributions 

clearly differ (being totally absent on one side in each case) and are 
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significant in their own right, probably arising from DataSift’s changing 

access to Facebook data over time (below). 

• In the remaining 5 cases statistical significance is not demonstrated. It is not 

possible to reject the null hypothesis for coordinate-geotagged/non-

coordinate-geotagged data NLP/geoparsed by GT in RT message text or by 

AlchemyAPI in TW message text or TW links at interaction level, or by CL in 

RT message text or by AlchemyAPI LI in RT linked/shared URL content at 

user level. Similar patterns of insignificance are not present in the 

SCOT2014 comparisons (below) suggesting that the sampling strategies 

used in US2012 (a mixture of one exclusively coordinate-geotagged Stream 

in 1:5 and two agnostically sampled Streams in 1:50 ratios) may have 

affected results. Further research (Section 7.5, p299) is required to repeat 

these tests against other OSN data sets recorded at different times, during 

similar electoral events, to reach decisive conclusions. 

In the SCOT2014 event (Table A12-6, p509): 

• Statistical significance with >95% confidence is found in 18 of 20 like-for-like 

cases comparing numbers of toponymic detections by NLP/geoparser in 

message text and linked/shared URLs for FB, TW and RT data at interaction 

and user levels. In over half (n=11) of these statistically significant 

comparisons non-coordinate-geotagged interactions or non-coordinate-

geotagging users, mean(x) in Table A12-6, make more NLP/geoparser-

detectable toponymic mentions in message text, or link to and share URLs 

having more detectable toponymic mentions in content, than their 

coordinate-geotagged or coordinate-geotagging, mean(y), corollaries. 

• In 2 cases, FB message text NLP/geoparsed by GT and linked/shared FB URL 

content parsed by AlchemyAPI LI, no statistical significance is found at 

interaction level. This is likely to reflect the disparity in numbers of non-
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coordinate (n=784,006) and coordinate-geotagged (n=1,231) Facebook 

posts recorded in the SCOT2014 data set (Table 4-8, p170). 

Overall, comparison of distributions of toponymic detections in the message text 

and linked/shared URL content of coordinate-geotagged and non-coordinate 

geotagged interactions, or for coordinate-geotagging and non-coordinate-

geotagging users, are statistically significant (t > ±2) with >95% confidence in 27 out 

of 40 cases. Statistics for 6 other cases could not be calculated owing to a lack of 

coordinate-geotagged Facebook posts in the US2012 data set which is itself 

significant, probably reflecting DataSift’s access to Facebook-sourced OSN 

interactions over time. In the SCOT2014 data set, sampled by one consistent and 

long-running 1:1 DataSift Stream, most like-for-like comparisons are statistically 

significant. 
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